Error-state Kalman Filter in Pose Estimation

Teng Ma

Abstract—This report is my study note on Error-state Kalman
Filter (ESKF). I am trying to make three points clear: 1. What
is ESKF? 2. Why do we choose ESKF? 3. How to use ESKF for
pose estimation in systems with IMU?

Index Terms—Error-state KF, pose estimation, IMU

I. INTRODUCTION

When I tried to break down the whole SLAM problem into
small parts, I saw error state a lot in filtering-based VIO/LIO
system [2] [3] . I am curious about this "new term” ESKF,
so I did some study on it and tried to implement ESKF in
LiDAR-inertial odometry. is Multiplicative Extended Kalman
Filter, MEKF

II. THEORY PART
A. What is Error-state Kalman Filter?

Error state is the difference between True state and Nominal
state. To be specific, high-frequency IMU data w,, is integrated
into a nominal-state x. This nominal state does not take
into account the noise terms w and other possible model
imperfections. As a consequence, it will accumulate errors.
These errors are collected in the error-state dx and estimated
with the Error-State Kalman Filter, this time incorporating
all the noise and perturbations. In parallel with integration
of the nominal state, the ESKF predicts a Gaussian estimate
of the error-state. It only predicts, because by now no other
measurement is available to correct these estimates. The filter
correction is performed at the arrival of information other than
IMU (e.g. GPS, vision, etc.), which is able to render the errors
observable and which happens generally at a much lower rate
than the integration phase. This correction provides a posterior
Gaussian estimate of the error-state. After this, the error-state’s
mean is injected into the nominal-state, then reset to zero.
The idea is to consider the nominal state as large-signal
(integrable in non-linear fashion) and the error-state as small
signal (thus linearly integrable and suitable for linear-Gaussian
filtering) [1].

B. Why ESKF?

In most modern IMU systems, people often use Error state
Kalman filter (ESKF) instead of the original state Kalman
filter. The reasons [1] are as follows:

o The orientation error-state is minimal (i.e., it has the same
number of parameters as degrees of freedom), avoiding
issues related to over-parametrization (or redundancy)
and the consequent risk of singularity of the involved
covariances matrices, resulting typically from enforcing
constraints.

o The error-state system is always operating close to the
origin, and therefore far from possible parameter singular-
ities, gimbal lock issues, or the like, providing a guarantee
that the linearization validity holds at all times.

o The error-state is always small, meaning that all second-
order products are negligible. This makes the computation
of Jacobians very easy and fast. Some Jacobians may
even be constant or equal to available state magnitudes.

o The error dynamics are slow because all the large-signal
dynamics have been integrated in the nominal-state. This
means that we can apply KF corrections (which are the
only means to observe the errors) at a lower rate than the
predictions.

C. Equation of State

First of all, here is the table contains all the variables used
below from [1]:

| Magnitude True | Nominal | Error | Composition | Measured | Noise |
Full state (*) xG X ox X, =X 0x I
Position P: P op P =P+ 0p
Velocity v, v ov V=V +0v
Quaternion (*?) qe q oq q =q®iq
Rotation matrix (%) | R, R SR R, =RJ/R
Angles vector (1) 06 :; Z :‘:;]i
Accelerometer bias ay a, day, ay, = a, + day, ay,
Gyrometer bias wyy wy dwy | wy = wy + dwy wy
Gravity vector g g og g =g+0g
Acceleration ay an a,
Angular rate wy W Wn

Fig. 1. All variables in the error-state Kalman filter.
True state x; in BSKF: x; = [pg, vy, Ry, ape, wpe, g¢) 7 s 2

change over time and the subscript t denotes true state. In
continuous time, we record the IMU reading as a,,, wy,, then
we can write the relationship between the derivative of the
state variable with respect to the observed measurement:

Pt = vt

Up = Ri(am — ape — an) + gt

R = Rt(wm — Wyt — Wy)"

Apt = Gy
Wht = Wy
gt =

All the symbols remain the same as what [1] use, more
details about the meaning of variables can be found in [1].
The only difference is that in [1] the author use Quaternion to
represent rotation, I use SO3 rotation matrix which is familiar

to me, so during the derivation I could make some mistakes.
Nominal state x kinematics corresponds to the modeled
system without noise or perturbations,

p=v
Q:R(am_ab)—’_g
R = R(wy, —wyp)”

ap, =0

wp =0

gt =0

Then we have error state dx kinematics:
op = v

5:1) = —R(am — ap)"00 — Rdap + g — Ra,

60 = —(wWm — wp) 66 — dwp — wy,

dap = ag,

5.(:% = Ww

0g=20

The discrete form of error state kinematics:

op = dp + dvAt

v = 0v + (—R(am — ap)"00 — Réap + dg) At + v;
80 = —RT ((wy — wp) A1)50 — Swp At + 0;

dap = dap + a;
owp = dwp + w;
d0g = dbg

Here, v;,0;,a;,w; are the random impulses applied to the
velocity, orientation and bias estimates, modeled by white
Gaussian processes. Their mean is zero, and their covariances
matrices are obtained by integrating the covariances of
G, W, Gy, W, Over the step time At.

D. Prediction and updating equations

Now we can get write the motion equation in discrete time
domain,
dr = f(0x) + w,w ~ N(0,Q)
w is noise, which is composed by wv;,0;,a;,w; mentioned
above, so (Q matrix should be:
Q = diag(cov(v;), cov(8;), cov(a;), cov(w;))
The prediction equations are written:
0Zpreq = Fox
Ppred:FPFT+Q
where F' is the Jaccobian of the error state function f, the
expression is detailed below:

I IAt 0 0 0 0
0 I —R@-b)'At —RAt 0 IAt
p_ |0 0 Exp(-@-b)Ay 0 -IAt 0
0 o 0 I 0 0
0 o 0 0 I 0
0 o 0 0 0 I

Fig. 2. Jaccobian matrix

Suppose an abstract sensor can produce observations of state
variables, and its observation equation is written as:
z=h(z)+v,v~N(0,V),

where h is a general nonlinear function of the system state
(the true state), and v is measurement noise, a white Gaussian

noise with covariance V. The updating equations are:

K = PpeqdHY (HPyreaHT + V)71

dx = K(z — h(x))

P=(I—-KH)Pyq

Where K is Kalman gain, P,..q is prediction covariance
matrix, P is covariance matrix after updating and H is defined
as the Jacobian matrix of measurement equation of error state,

dh
H = 55,
According to chain rule,
H = 9h oz
T Oz 9oz

First part % can easily obtained by linearizing the mea-

surement equation, the second part g{fv is the Jacobian of
the true state with respect to the error state, which is the
combination of 3x3 identity matrix (for example, 8(2%;;5;)) =
I3), expect for the rotation part, in quaternion form it is
%, the deduction is in [1], here in the form of rotation
matrix in SO3, it is W, where Exp(d6) is the
Lie algebra of rotation R, H can be obtained according to
Baker—Campbell-Hausdorff (BCH) formula.

After updating, we have

Tit1 = Tk D 0

5.2% =0

Note: I only wrote the equations that define angular error in
the local reference, the global situation is shown in [1].

III. EXPERIMENTS
A. Description

I generated the trajectory data from “2011-09-26-drive-
0001-sync/oxts”, KITTI, which contains GPS and IMU data,
and found the LiDAR odometry and ground truth on github,
which should save my time if things go as planned. What’s
not so good is that ground truth only contains position data.
All the codes are implemented in pyhton 3.8.5, ubuntu 20.04.
The first experiment is fusing GPS data (Latitude, longitude,
altitude) and IMU data (acceleration and angular velocity) to
estimate the trajectory. I use toolbox that KITTI dataset offers
to get transformation matrix from GPS/IMU data, and logged
the position data calculated from GPS data (according to the
source code in MATLAB) in a txt file "pos.txt”, the same form
as ground truth in file gt.txt”. The results are in the figure 3, 4.

The second experiment is fusing LiDAR data with IMU
data, which didn’t go well. The LiDAR data didn’t align
with ground truth, and bad data yields bad result. Then I
had 2 options: 1. Extracting LiDAR odometry from raw data
from beginning, which I tried to get the transformation matrix
between 2 neighbour frames of point cloud data, I have to
implement some feature descriptor, otherwise no matter ICP or
NDT cannot generate good results; 2. Finding what is wrong in
the given data. After I checking the position of sensors on the
car that KITTI employed, I found that the mismatch could lie
in the coordinate system of LiDAR data, I am trying to reach
out the author by issuing on github, but for now let’s see how
is the data after transformation. The parameters remain the
same as experiment 1, I only changed the covarience matrix
of measurement. The results is in figure 5, 6 and 7.

Final Estimated Trajectory

—— Estimated
Ground Truth
— GPS

O N W s g
z[m]

0
20

40

60

*lmj 100

Fig. 3. Trajectories of estimation, GPS and ground truth

Fig. 4. Mean square error

Final Estimated Trajectory

—— Estimated
Ground Truth

Fig. 5. Trajectories top view

Final Estimated Trajectory

—— Estimated
Ground Truth

z[m]

P 80 _
{my 100 10

Fig. 6. Trajectories front view

Fig. 7. Mean square error

B. results analysis

The first experiment worked well, since the data is aligned
the result is good. The second one is not as good as I expected,
after data correction the LiDAR odometry is still not close to
the ground truth, but the trend is the aligned (not going the
opposite direction as the original version). The error mainly
lies in z axis direction, the result tend to diverge in z axis as
time goes. The reason I thought is: 1, garbage in, garbage out.
The acceleration given by IMU and position given by LiDAR
odometry are both in the wrong direction. 2. the equations
implemented in code is not totally right. The acceleration data
integrates gravity so the formula changes compared to the
book [1]. As far as I can tell, removing the gravity is not
a big deal. Moreover, I found that the reason why we estimate
gravity in ESKF is for IMU initialization. If we do not write
the gravity variable in the equation of state, then the IMU
orientation at the initial moment must be the in the direction
of R(0). At this time, the posture of the IMU is described
relative to the initial horizontal plane. If the gravity is written,
the initial attitude of the IMU can be set as the identity matrix,
and the direction of gravity can be used as a measurement of
the current attitude of the IMU compared to the horizontal
plane. Both methods are feasible, but expressing the direction
of gravity alone will make the initial posture expression easier,
and it can also increase some linearity [4].

IV. SUMMARY

ESKF is a Kalman Filter(or EKF) that suits IMU, I spent
one-third of my time studying KITTI dataset, one-third for
theory deduction and one third implementation. I think I
should do more about datasets searching, every time that I
search the data already packed well online and thought it
could save me time, turns out I will do more research on
it to use the data for my experiment. What’s important is that
I implemented a filtering algorithm in python on my own, and
I feel good after finishing it.

REFERENCES

[1] Sola J. Quaternion kinematics for the error-state Kalman filter[J]. arXiv
preprint arXiv:1711.02508, 2017.

[2] Xu W, Zhang F. Fast-lio: A fast, robust lidar-inertial odometry package
by tightly-coupled iterated kalman filter[J]. IEEE Robotics and Automa-
tion Letters, 2021, 6(2): 3317-3324.

[3] Xu W, Cai Y, He D, et al. Fast-lio2: Fast direct lidar-inertial odometry[J].
arXiv preprint arXiv:2107.06829, 2021.

[4] Lupton T, Sukkarieh S. Efficient integration of inertial observations into
visual SLAM without initialization[C]//2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2009: 1547-1552.

