

Research on Feature Descriptors

Used for Point Cloud Registration

Robotic Perception and Action: Homework

Team SLAMer: Ma Teng, Sharad Maheshwari, Mingxuan Liu

Table of Contents
1. 2

2. 2

3. 2

3.1 PREPROCESS 4
3.2 KEYPOINT DETECTION 4

3.21 SIFT3D (Scale-invariant feature transform) 4
3.22 ISS3D (Intrinsic Shape Signatures) 5

3.3 COMPUTING DESCRIPTORS 5
3.31 PFH (Point Feature Histogram) 5
3.32 FPFH (Fast Point Feature Histogram) 6
3.33 SI (Spin Image) 6
3.34 SHOT (Signature of Histogram of Orientation) 6
3.35 CSHOT (Color Signature of Histogram of Orientation) 7

3.36 7

3.4 COARSE REGISTRATION 8
3.41 RANSAC (Random Sample Consensus) 8
3.42 SAC-IA (Sample Consensus Initial Alignment) 9

3.5 FINE REGISTRATION 9
3.51 ICP (Iterative Closest Point) 9
3.52 Point to plane ICP 11

4. 11

APPENDIX A 12

BUILD PLATFORM 12
PACKAGE COMMISSIONING STEPS 12

Opening Unity and enabling ‘unsafe programming 12
Importing packages 12
How to setup your 3D object 13
How to capture and save pointcloud as ‘.pcd’ file 13
How to visualizer point cloud 14

EXAMPLE 1 15
EXAMPLE 2 17

APPENDIX B 20

INTRODUCTION 20
CONTINUOUS INTEGRATION 20
COMPILING 20
PCL SETUP EXAMPLE 20

Downloading PCL 21
Installing PCL 21
Setup system environments 21
Setup Visual Studio 2019 environments 22

APPENDIX C 34

REFERENCES 30

1. Introduction

To help robots know our world better, we need to introduce 3D vision and teach computer how to

process point cloud data. The main goal of this article is to explain how we process point cloud data

and gain a good result in point cloud registration with the help of PCL (point cloud library) and

Open3D (library for 3D data processing).

2. Problem description

In order to achieve SLAM, first we need to get the information of the environment, here we use 3d

camera to generate PCD files in unity (find more in appendix). Then we want to match two 3d

pictures come from the same environment with a different shooting angle and get the transformation,

which is the main task of our work.

3. Implementation

There are 2 routes in general when it comes to point cloud registration: local pipelines and global

pipelines (specific procedures shown in Figure 1).

Figure 1. implementation flow charts of 2 pipelines

https://pointclouds.org/
http://www.open3d.org/

The main difference between them is the way they describe the point cloud, as a result, there are

local descriptors and global descriptors. Local descriptors are computed for individual points that

we give as input. They have no notion of what an object is, they just describe how the local geometry

is around that point. Local descriptors are used for object recognition and registration. Global

descriptors encode object geometry. They are not computed for individual points, but for a whole

cluster that represents an object. Global descriptors are used for object recognition and classification,

geometric analysis (object type, shape...), and pose estimation. Considering the scenarios in SLAM,

for simplicity, we choose local pipelines (shown in Figure 2). Now we explain how we register point

cloud step by step.

Figure 2. Local pipelines we implement

3.1 Preprocess

Before we implement those complex algorithms, it’s necessary to preprocess the input point cloud

data. Usually, we get the point cloud data from the real world, we need to deal with the noise. The

most important part here is to denoise. We can use filters to remove outliers or set a specific

remove condition (many filters you can choose, up to you), if the data in point cloud is too much,

down-sampling is helpful. In order to get a more compact and clean point cloud, removing NaN

(not a number) is a wise move. (You can find many other methods to preprocess a point cloud in

PCL and Open3D, choose the one you need).

3.2 Keypoint detection

In this step, we choose 2 frequently-used methods: ISS (Intrinsic Shape Signatures) and SIFT

(Scale-invariant feature transform). Other methods like Harris3d, NARF are not employed due to

the lack of time.

3.21 SIFT3D (Scale-invariant feature transform)

This method includes a 3D interest point detector that is based on SURF, and a 3D descriptor that

extends SIFT, which means a 3D version of the Hessian is used to find keypoints. [1]

3.22 ISS3D (Intrinsic Shape Signatures)

Keypoints determined by ISS are those that have large 3D point variations in their neighborhood,

then implement PCA (Principal Component Analysis), the smallest eigenvalue of the covariance

matrix should be large. [2]

1. compute scatter matrix in radius R, and get the eigenvalue 𝜆1, 𝜆2, 𝜆3 in decreasing

magnitude.

 2. if
𝜆1

𝜆2
< 𝑟21,

𝜆2

𝜆3
< 𝑟32, then we get initial keypoints, the threshold r is set by us.

 3. Non-maximum suppression with 𝜆3, which represents the central point.
Notes: Scatter matrix is similar to covariance matrix, by definition, scatter matrix equals to

covariance matrix multiply n-1, n is the sample number.

Scatter matrix is computed as: 𝑋𝑋𝑇, where X is zero-centered matrix contains points.

As a result, scatter matrix is a simpler version when it comes to PCA. ISS3D ensures the detected

keypoints are those different from their neighbours in three dimensions, it also requires a clean

data source for the reason that it is sensitive to noise.

3.3 Computing descriptors

We implement 5 descriptors: FPFH, SI, SHOT, CSHOT, SIFT (both feature extraction and

descriptor), and investigate a new data-driven descriptor: 3DMatch, now let’s introduce them one

by one.

3.31 PFH (Point Feature Histogram)

FPFH comes from PFH, so we start with PFH. PFH captures information of the geometry

surrounding the point by analyzing the difference between the directions of the normals in the

vicinity (as shown in Figure 3), [3]

(a) (b)

Figure 3: Point Feature Histogram. (a) Support region for a query point 𝑝𝑞 (b) Darboux frame

Choose k nearest neighbors of point p, for every pair of points 𝑝𝑖 and 𝑝𝑗 in the neighborhood of 𝑝,

where one point is chosen as 𝑝𝑠 and the other as 𝑝𝑡, first, a Darboux frame, which is a natural

moving frame, constructed on a surface is constructed at 𝑝𝑠 as

𝑢 = 𝑛𝑠 , 𝑣 = 𝑢 ×
(𝑝𝑡 − 𝑝𝑠)

||𝑝𝑡 − 𝑝𝑠||2
, 𝑤 = 𝑢 × 𝑣

https://en.wikipedia.org/wiki/Darboux_frame
https://en.wikipedia.org/wiki/Moving_frame
https://en.wikipedia.org/wiki/Moving_frame

Then, using the frame defined above, three angular features: 𝛼, 𝛷, 𝜃, expressing the differences

between normals 𝑛𝑡 and 𝑛𝑠, and the distance 𝑑 are computed

for each point pair in the support region.

𝛼 = 〈𝑣, 𝑛𝑡〉, 𝛷 =
〈𝑢, 𝑝𝑡 − 𝑝𝑠〉

𝑑
, 𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛(〈𝑤, 𝑛𝑡〉, 〈𝑢, 𝑛𝑡〉), 𝑑 = ||𝑝𝑡 − 𝑝𝑠||2

And the final PFH representation is created by binning these four features into a histogram with

𝑑𝑖𝑣4 bins, where 𝑑𝑖𝑣 is the number of subdivisions along each features’ value range.

In this case, we need to compute
𝑘(𝑘+1)

2
 times for k neighbors.

3.32 FPFH (Fast Point Feature Histogram)

In order to reduce computational complexity, FPFH [4]

1. considers only the direct connections between the current keypoint and its neighbors, get the

SPFH (Simplified Point Feature Histogram).

2. the SPFHs of a point's neighbors are "merged" with its own, weighted according to the distance.

𝐹𝑃𝐹𝐻(𝑝) = 𝑆𝑃𝐹𝑃(𝑝) +
1

𝑘
∑

1

𝜔𝑘

𝑘

𝑖=1

∙ 𝑆𝑃𝐹𝐻(𝑝𝑘)

Where 𝜔𝑘 donates the distance between the query point and a neighbor in the support region.

In this case, we only need to compute k times for k neighbors when calculating the four values.

Besides, FPFH adds the neighbors’ neighbors to represent a point, doubles the search radius of

FPH.

3.33 SI (Spin Image)

The main idea of SI is to transform the point cloud in a certain area into a two-dimensional spin

image, then we measure the similarity between two spin images. [5]

An oriented point is defined by a coordinate p and its surface normal n. Then the spin image

attributes of each neighbor q of the feature point is defined as a pair of distances (𝛼, 𝛽), where

𝛼 = 𝑛𝑞 ∙ (𝑝 − 𝑞) and 𝛽 = √||𝑝 − 𝑞||2 − 𝛼2 (shown in Figure 4(a)).

We generate a cylindrical coordinate system with the oriented point as the axis, set the radius R,

then set the length and width of our spin image (usually the image is a square and one width

parameter W, which represents the number of bins a row in the image, is enough), the resolution

of the image is
𝑅

𝑊
 .

Now we need to put the 3D points into our 2D image, one way is spinning the image 360° along

the axis (oriented point) and let the points fall into the image bins, we can get the intensity of each

bins just by calculating the number of points in the bins, in fact, in order to be more robust, a point

is distributed into four pixels by bilinear interpolation, shown in Figure 4(b).

 (a). Spin Image

(b). bilinear interpolation

Figure 4.

In the end, we need to measure the similarity between two spin images, according to the paper, the

similarity function C is:

𝐶(𝑃, 𝑄) = (𝑎𝑡𝑎𝑛ℎ(𝑅(𝑃, 𝑄)))
2

− 𝜆 (
1

𝑁 − 3
)

Where N is the number of pixels, R is:

𝑅(𝑃, 𝑄) =
𝑁 ∑ 𝑝𝑖𝑞𝑖 − ∑ 𝑝𝑖 ∑ 𝑞𝑖

√(𝑁 ∑ 𝑝𝑖
2 − (∑ 𝑝𝑖)2)(𝑁 ∑ 𝑞𝑖

2 − (∑ 𝑞𝑖)2)

The value range of R is [- 1,1]. The more similar the two spin images are, the closer R is to 1.

When they are exactly the same, the value of R is 1.

The first part is the square of the value obtained by the inverse hyperbolic tangent function of C,

and the second part is a weight λ multiplied by a smaller number. When two spin images are

similar, the proportion of the second part should be smaller. When they are not close, the

proportion of the second part should be larger. The function of λ is to limit spin images match

when the overlap is low. In this paper, the way to select λ is to list the number of non-empty pixels

in all spin images in order of size, and then take the median. This median is almost the expected

value of pixel overlap. Then, considering the low overlap, we take half of the median as λ.

3.34 SHOT (Signature of Histogram of Orientation)

A combination of Signatures and Histograms. [6]

1. According to the neighborhood information of feature points, the local reference coordinate

system LRF is established, and the neighborhood of feature points is divided along the radial

direction (inner and outer spheres), longitude direction (time zone) and latitude direction (North

and south hemispheres). Generally, there are 32 small areas, which are divided into 2 in radial

direction, 8 in longitude and 2 in latitude (shown in Figure 5).

2. The distribution of cosine value of angle between normal vectors in each small area is

calculated, and the normal vectors are divided into 11 bins. The length of the final shot is: 32x11 =

352.

Figure 5. Signature structure for SHOT

3.35 CSHOT (Color Signature of Histogram of Orientation)

In order to improve the accuracy of feature matching, a variant that uses the texture information

(CIELab color space) for matching called CSHOT is proposed. The histogram is 31 levels, so the

length of color descriptor is 32x31 = 992; the SHOT descriptor with color information has 1344

dimensions. [7]

3.36 3DMatch

In recent years, deep learning plays an important role in 2D image recognition. In fact, when it

comes to problems like pattern recognition, machine outperforms human with DNN (Deep Learning

Network). 3DMatch is a data-driven model that learns a local volumetric patch descriptor for

establishing correspondences between partial 3D data. It is a standard 3D ConvNet, inspired by

AlexNet. The network learns the mapping from a volumetric 3D patch to a 512-dimensional feature

representation that serves as the descriptor for that local region. Optimizing the mapping by

minimizing the 𝑙2 distance between descriptors generated from corresponding interest points

(matches), and maximize the 𝑙2 distance between descriptors generated from non-corresponding

interest points (non-matches). [8]

The key idea is to amass training data by leveraging correspondence labels found in existing RGB-

D scene reconstructions, which is a massive source of labeled correspondences between surfaces

points of aligned frames (shown in Figure 6).

Figure 6. Learning 3DMatch from reconstructions. From existing RGB-D reconstructions (a), we extract local

3D patches and correspondence labels from scans of different views (b). We collect pairs of matching and

non-matching local 3D patches and convert into a volumetric representation (c) to train a 3D ConvNet-

based descriptor (d). This geometric descriptor can be used to establish correspondences for matching 3D

geometry in various applications (e) such as reconstruction, model alignment, and surface correspondence.

3.4 Coarse registration

To get a good initial state for ICP, we use SAC-IA (Sample Consensus Initial Alignment) to

register the point cloud before ICP. SAC-IA shares a similar idea with RANSAC (Random

Sample Consensus), which is widely used in registration as well (with a known model to fit). First,

we learn RANSAC.

3.41 RANSAC (Random Sample Consensus)

The RANSAC algorithm is a learning technique to estimate parameters of a model by random
sampling of observed data. Given a dataset whose data elements contain both inliers and outliers

(shown in Figure 7), RANSAC uses the voting scheme to find the optimal fitting result. Data

elements in the dataset are used to vote for one or multiple models. The implementation of this

voting scheme is based on two assumptions: that the noisy features will not vote consistently for

any single model (few outliers) and there are enough features to agree on a good model (few missing

data). The RANSAC algorithm is essentially composed of two steps that are iteratively repeated:

In the first step, a sample subset containing minimal data items is randomly selected from the input

dataset. A fitting model and the corresponding model parameters are computed using only the

elements of this sample subset. The cardinality of the sample subset is the smallest sufficient to

determine the model parameters. (find more on Wikipedia.)

In the second step, the algorithm checks which elements of the entire dataset are consistent with the

model instantiated by the estimated model parameters obtained from the first step. A data element

will be considered as an outlier if it does not fit the fitting model instantiated by the set of estimated

model parameters within some error threshold that defines the maximum deviation attributable to

the effect of noise.

The RANSAC algorithm will iteratively repeat the above two steps until the obtained consensus set

(set of inliers obtained for the fitting model) in certain iteration has enough inliers.

Figure 7. RANSAC: Inliers and Outliers.

3.42 SAC-IA (Sample Consensus Initial Alignment)

In order to get the initial transformation, inspired by RANSAC, SAC-IA estimates the

transformation in a fast way. [9]

Instead of greedy search with a high computational complexity, SAC-IA collects a large number

of samples from candidate correspondence, finds a good transformation quickly by looking at a

large number of correspondences. This approach maintains the same geometric relations of the

correspondences without having to try all combinations of a limited set of correspondences, by

employing the following scheme:

1. pick n (n>=3) points in the source point cloud with different features (set a minimum distance

between each two points).

2. find the points in target point cloud with similar feature to the point picked in step 1, and choose

one point in random.

3. solve the rotation and displacement by SVD, calculate the loss function, iterate to get the best

transformation.

3.5 Fine registration

Finally, we use ICP for fine registration. ICP is a local register method and there are global

methods (e. g. 4PCS). There are many variations of ICP, here we take the standard point-to-point

ICP and point-to-plane ICP to show the basic idea of ICP in general.

https://en.wikipedia.org/wiki/Random_sample_consensus

3.51 ICP (Iterative Closest Point)

After SAC-IA, we get the approximate transformation matrix which gives ICP a good initial state.

ICP find the correspondence between points in a greedy way (closest point), as a result, when the

correspondence is unknow and transformation between the source point cloud and the target point

cloud is significant (far distance), ICP lost accuracy. Then we start ICP algorithm (shown in

Figure 6). [10]

1. compute correspondences between the two scans

2. compute a transformation which minimizes distance between corresponding points.

Iteratively repeating these two steps typically results in convergence to the desired transformation.

In practice, some points will not have any correspondence in the target point cloud, based on that

fact, the algorithm contains a maximum matching threshold 𝑑𝑚𝑎𝑥. In most implementations of

ICP, the choice of 𝑑𝑚𝑎𝑥 represents a trade-off between convergence and accuracy. A low value

results in bad convergence (the algorithm becomes “short sighted”); a large value causes incorrect

correspondences to pull the final alignment away from the correct value.

Figure 6. Standard ICP

There are two ways to find the solution in ICP: SVD and non-linear optimization.

1. SVD-based method:

Given: 𝑃 = {𝑝𝑖}, 𝑄 = {𝑞𝑖}

Optimization target: 𝛴𝑖 =
1

𝑁
∑𝑖∈𝑄,𝑗∈𝑃 (𝑞𝑖 − 𝑢𝑄)(𝑝 − 𝑢𝑝)𝑇

Algorithm

For 𝑖 in range(iterations):

• Centering datasets

𝑢𝑄 =
1

|𝐶|
∑(𝑖,𝑗)∈𝐶 𝑞𝑖 𝑢𝑝 =

1

|𝐶|
∑(𝑖,𝑗)∈𝐶 𝑝𝑗

𝑄′ = {𝑞𝑖 − 𝑢𝑄} = {𝑞𝑖
′} 𝑃′ = {𝑝𝑗 − 𝑢𝑝} = {𝑝𝑗

′}

• Find correlative pairs for each 𝑃 = {𝑝𝑖} 𝑖𝑛 𝑄 = {𝑞𝑖} (nearest neighbors)

• Calculate cross-covariance along all pairs with kernel

𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑘𝑒𝑟𝑛𝑒𝑙(𝑝𝑗
′ , 𝑞𝑖

′)

𝛴𝑖 =
1

𝑁
∑

𝑖∈𝑄′,𝑗∈𝑃′

(𝑞𝑖
′)(𝑝𝑗

′)𝑇 = [𝑐𝑜𝑣(𝑝𝑥, 𝑞𝑥) 𝑐𝑜𝑣(𝑝𝑥, 𝑞𝑦) 𝑐𝑜𝑣(𝑝𝑦, 𝑞𝑥) 𝑐𝑜𝑣(𝑝𝑦, 𝑞𝑦)]

• Do SVD decomposition and get Roto.&Trans. Matrix

𝑈, 𝑆, 𝑉𝑇 = 𝑆𝑉𝐷(𝛴𝑖)

𝑅𝑖 = 𝑈𝑉𝑇 𝑡𝑖 = 𝑢𝑄 − 𝑅𝑖𝑢𝑝
• Use Roto.&Trans. transform 𝑃 to match 𝑄

𝑃𝑚𝑖 = {𝑅𝑖𝑝𝑖 + 𝑡} = {𝑝𝑚𝑖,𝑗}

2. Non-linear Least-squares based method:

Given: 𝑃 = {𝑝𝑖}, 𝑄 = {𝑞𝑖}

Optimization target: 𝐸 = ∑𝑖 [𝑅𝜃𝑝𝑖 + 𝑡 − 𝑞𝑗]
2

→ 𝑚𝑖𝑛

Algorithm

Initialize rotation matrix 𝑅𝜃 and its derivative of rotation matrix 𝑅𝜃̇

Initialize rot-translation pose 𝑥 = {𝑡, 𝜃𝑟𝑜𝑡}𝑇 = {𝑥𝑡, 𝑦𝑡 , 𝜃𝑟𝑜𝑡}𝑇

For 𝑖 in range(iterations):

• Find correlative pairs for each 𝑃 = {𝑝𝑖} 𝑖𝑛 𝑄 = {𝑞𝑖} (nearest neighbors)

For 𝑚 in (𝑄 = {𝑞𝑗}, 𝑃 = {𝑝𝑖}):

• Calc single pair error, update Loss function and Calc it’s weight

𝑒(𝑖,𝑗)(𝑥) = ℎ𝑖(𝑥) − 𝑞𝑗 = 𝑅𝜃𝑝𝑖 + 𝑡 − 𝑞𝑗

𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑘𝑒𝑟𝑛𝑒𝑙(𝑝𝑗
′ , 𝑞𝑖

′)

• Calc Jacobian matrix

𝑇 =
𝜕𝑒𝑖,𝑗(𝑥)

𝜕𝑥
=

𝜕ℎ𝑖(𝑥)

𝜕𝑥
= (

𝜕ℎ𝑖(𝑥)

𝜕𝑥
,
𝜕ℎ𝑖(𝑥)

𝜕𝑦
,
𝜕ℎ𝑖(𝑥)

𝜕𝜃
) = (𝐼, 𝑅𝜃̇𝑝𝑖)

= [1 0 −𝑠𝑖𝑛 𝑝𝑖
𝑥𝑠𝑖𝑛 𝜃 −𝑐𝑜𝑠 𝑝𝑖

𝑦
𝑐𝑜𝑠 𝜃 0 1 𝑝𝑖

𝑥 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛 𝑝𝑖
𝑦

𝑠𝑖𝑛 𝜃]
• Calc Hessian matrix and update it

𝐻 ← 𝐻 + 𝐻𝑚 = 𝐻 + 𝑇(𝑖,𝑗)
𝑇 𝑇(𝑖,𝑗)

• Calc Gradient of single pair error and update Gradient of loss function

𝑔 ← 𝑔 + 𝑔(𝑖,𝑗)
′ = 𝑔 + 𝑇(𝑖,𝑗)

𝑇 𝑒(𝑖,𝑗)

• Do Least-square solver to get the increment ∆𝑥 = 𝐿𝑒𝑎𝑠𝑡𝑆𝑞𝑢𝑎𝑟𝑒(𝐻, −𝑔)

• Update pose: 𝑥 ← 𝑥 + ∆𝑥 = 𝑥 + {∆𝑥𝑡 , ∆𝑦𝑡 , ∆𝜃𝑟𝑜𝑡}𝑇

• Use Roto.&Trans. transform 𝑃 to match 𝑄: 𝑃𝑚𝑖 = {𝑅𝑖𝑝𝑖 + 𝑡} = {𝑝𝑚𝑖,𝑗}

3.52 Point to plane ICP

Instead of minimizing ∑ ||𝑇 ∙ 𝑏𝑖 − 𝑚𝑖||2, the point-to-plane algorithm minimizes error along

the surface normal (the projection of (𝑇 ∙ 𝑏𝑖 − 𝑚𝑖) onto the sub-space spanned by the surface

normal). [11]

4. Comparison and analysis of our pipelines

To compare these different feature descriptors, we uniformly use SIFT to detect the key points

from the source and target point clouds.

Then, we computed different feature descriptors (SI, FPFH, SHOT, CSHOT, SIFT) for the same

detected key points of each pair of source and target point clouds.

Finally, we uniformly use RANSAC for coarse registration and ICP for fine registration for each

pair of source and target with different computed feature descriptors.

Implementation of pipelines:

(1) SIFT3D + RANSAC + ICP

(2) SIFT3D + Spin Image + RANSAC + ICP

(3) SIFT3D + FPFH + RANSAC + ICP

(4) SIFT3D + SHOT + RANSAC + ICP

(5) SIFT3D + CSHOT + RANSAC + ICP

Dependencies:

● Point Cloud Library

● C++

● Visual Studio 2019

● Unity

4.1 Final delivery

(1) v7.3_ReleasedTookKit_MiroRGB3DCamera.zip

● Released_MiroRGB3DCameraV7.3: final version camera in Unity

● Setup Manual_MiroRGB3DCameraV7.3: Unity setup tutorial

● pcdVisualizer.py: Python visualizer

● pcd2fig: MATLAB visualizer

● Apartment: demo prefab

● Japanese Torii: demo prefab

● Miaomiao: demo prefab

(2) Pipelines+Manual-PointCloud_Registration.zip

● PCL_Setup Manual_PCL1.11.1+Windows+VS2019_x64: PCL setup tutorial

● f_pipeline_setup.h: header file that includes all parameters for pipelines

● fpip_ISS3D+CSHOT+RANSAC+ICP.cpp

● fpip_SIFT+FPFH+RANSAC+ICP.cpp

● fpip_SIFT+RANSAC+ICP.cpp

● fpip_SIFT+SHOT+RANSAC+ICP.cpp

● fpip_SIFT+SI+RANSAC+ICP.cpp

4.2 Performance

The number of registered point pairs between source and target point clouds can reflect the

registration performance of these descriptors.

Figure 1 presents the number of registered points of each pipeline using different feature

descriptors with increasing the noises of the point cloud from 0 (0%) to 4.0(100%) in our

experiment. It can be clearly seen that first, SI descriptor has a relatively better performance

with increasing noises. In contrast, SIFT descriptor that is the key points themselves detected

by SIFT has the lowest performance. Moreover, when other geometry-based descriptors have

lower performance, CSHOT descriptor that use color information has a better performance

than others.

Fig1: Number of registered point pairs using different feature descriptors with increasing

noises

4.3 Efficiency

During the experiments, we also recorded the computational cost of these descriptors. Figure

2 presents the running time of calculating descriptors for source and target key points with

increasing noises of the point cloud from 0 (0%) to 4.0(100%). We can clearly see that SI

descriptor is the most efficient descriptor. In contrast, SHOT and CSHOT become the most

computationally expensive descriptors under current radius. However, if we increase the

searching radius, the efficiency of these descriptors will decrease by different degree.

Fig2: Computation time required to generate the descriptor for the key points using different

feature descriptors with increasing noises

4.4 Conclusion and future work

Overall, SI performs the best among these descriptors. SI has a good balance between

performance and efficiency. Particularly, SI is suitable for real-time applications.

However, the performance and efficiency of these descriptors highly depends on the

parameters setting. For instance, during the experiments, we found that the efficiency of

FPFH decreased dramatically with increasing searching radius. If we set a larger searching

radius for FPFH descriptor, it will become very slow, while other descriptors are not very

sensitive to the increasing searching radius. In order to obtain a clearer and comprehensive

understanding of these feature descriptors, we should carry out more experiments in tuning

the parameters setting in the future.

Besides, in the current experiment, we used sparse point cloud data (object only), which is

simple and has many NaN values. In the future, we will use the dense point cloud data like

in the real world, having complex scene, as the experiment data.

The last but most interesting thing, although CSHOT is the only descriptor that takes into

account the color information, it didn’t perform better in the experiment. However, in some

cases, CSHOT outperformed other descriptors. Therefore, in future work, we need to make

more comparisons under different conditions and scenarios to find the most suitable

application for CSHOT.

Appendix A

Miro RGB-D Camera v7.3 Setup

Build Platform

● Game Engine: Unity 2019.4.11f1 LTS

● IDE: Visual Studio 2019

Package Commissioning Steps

Opening Unity and enabling ‘unsafe programming

To use the Miro RGB-D Camera v7.3, you need to enable “Allow ‘unsafe’ code” in Unity,

because we need to do casting in C#.

(1) Opening Unity and creating a new project(or open your project)

(2) Enabling “Allow ‘unsafe’ code” model by “Edit 🡪 Project Settings 🡪 Player 🡪 tick “Allow

‘unsafe’ code”

Otherwise, there will be a warning in Unity after you import the Miro RGB-D Camera v7.3

package like shown below:

Importing packages

After downloading the released toolkit, you might have five tools:

● Released_MiroRGB3DCameraV7.3.unitypackage: Miro RGB-D Camera v7.3

● Apartment.unitypackage: example prefab

● JapaneseTorii. unitypackage: example prefab

● Miaomiao. unitypackage: example prefab

● pcd2fig.m: MATLAB PCD file visualizer

● pcdVisualizer.py: Python PCD file visualizer

In order to use these tools, steps as below:

(1) Uncompress “ReleasedToolKit_MiroRGB3DCameraV7.3”

(2) Import three unity package by “Assets 🡪 Import Package 🡪 Custom Package ...”

● “... Released_MiroRGB3DCameraV7.3.unitypackage”

● “... Miaomiao.unitypackage”

● “... JapaneseTorii. unitypackage”

● “... Apartment.unitypackage”

(3) Drag “RGB3DCameraV6” prefab inside the scene

(4) Drag “Torii” prefab inside the scene

(5) Drag “cat” prefab inside the scene

(6) Save the scene

How to setup your 3D object

To capture the XYZ information and color information of the texture of your 3D object in

Unity, you should setup your object properly:

(1) Adding “Mesh Collider” component to your 3D object and assign the corresponding

“Mesh” to it, like:

● Select “cat/cat” in the scene

● Add Mesh Collider in Inspector

● Find the mesh for the ‘cat’ object in

“Project🡪RGB_Test_Miaomiao🡪Models🡪cat🡪cat”, and drag it into the ‘cat’

objects in the scene 🡪 Inspector 🡪 Mesh Collider 🡪 Mesh

(2) Adding “texture” component to your 3D object and enabling the texture can be

read/write by ticking the “Read/Write Enable” in “Import Settings 🡪 Advanced 🡪

Read/Write Enable” of your texture. This is a compulsory step if you want to capture

the color(RGB) information from you object.

How to capture and save pointcloud as ‘.pcd’ file

To simply capture point cloud of your object with XYZ information and color information(if

you want), you can refer the following steps:

(1) Run the game

(2) Select ‘RGB3DCameraV7’ in the ‘Hierarchy’

(3) Tick the RGB Enabler(if you want to add RGB info in your point cloud) on the

‘Inspector’

(4) Tune the ‘noise setting’(if you want to add different noises in you point cloud)) on

the ‘Inspector’

(5) Click on ‘Capture Points’ on the ‘Inspector’

(6) Click on ‘Save Last Captured Points’ on the ‘Inspector’ to save the point cloud into

‘.pcd’ format

Besides, you definitely can design your own Unity project and play with the camera

automatically by directly calling the functions or setting parameters in your code.

How to visualizer point cloud

In the toolkit, we also provide you with two simple point cloud visualizer.

Option 1: Python + open3d library(http://www.open3d.org/docs/release/introduction.html)

● Open the Python file ‘pcdVisualizer.py’

● Change the path of the ‘.pcd’ file with yours

● Save the changed Python file

● Run the Python file ‘pcdVisualizer.py’ in the way you like

● P.S.: With this visualizer, you can also calculate the normal of your point cloud

surface and visualize the normals

Option 2: Matlab

● Open the Matlab file ‘pcd2fig.m’

● Change the path of the ‘.pcd’ file with yours

● Run the script

http://www.open3d.org/docs/release/introduction.html

Example 1

Unity interface

Draw point cloud in Unity

Visualize point cloud with color information and noises

Visualize point cloud normals

Example 2

Unity interface

Camera viewpoint

Draw extrema and point cloud in Unity

Visualize point cloud with XYZ information only and noises

Visualize point cloud with color information and noises

Visualize point cloud with color information, no noises

Appendix B

Point Cloud Library Setup

Introduction

The Point Cloud Library (PCL) is a standalone, large scale, open project for 2D/3D image and

point cloud processing. PCL is released under the terms of the BSD license, and thus free for

commercial and research use.

Continuous integration

Compiling

Linux: https://pcl-tutorials.readthedocs.io/en/latest/compiling_pcl_posix.html

Mac OS X: https://pcl-tutorials.readthedocs.io/en/latest/compiling_pcl_posix.html

Microsoft Windows: https://pcl-

tutorials.readthedocs.io/en/latest/compiling_pcl_windows.html

PCL setup example

Below is a detailed tutorial about how to setup PCL 1.11.1 and its environments on Windows

with VS2019 X64.

● Build platform: Windows VS2019 X64

https://pcl-tutorials.readthedocs.io/en/latest/compiling_pcl_posix.html
https://pcl-tutorials.readthedocs.io/en/latest/compiling_pcl_posix.html
https://pcl-tutorials.readthedocs.io/en/latest/compiling_pcl_windows.html
https://pcl-tutorials.readthedocs.io/en/latest/compiling_pcl_windows.html

● PCL version: PCL 1.11.1

Downloading PCL

Accessing PCL from Github releases:

https://github.com/PointCloudLibrary/pcl/releases/tag/pcl-1.11.1

Then, downloading “PCL-1.11.1-AllInOne-msvc2019-win64.exe”

Installing PCL

Double click “PCL-1.11.1-AllInOne-msvc2019-win64.exe” to start install.

(1) Click “next” until below figure, and then choose “Add PCL to the system PATH for all

users”

(2) Choose target file path(recommend to choose “C:\Program Files\PCL 1.11.1”, since you

can fully refer this tutorial)

(3) Click “next” until installation complete

Setup system environments

(1) Copy and paste “pcl-1.11.1-pdb-msvc2019-win64” file that you extracted from the

PCL 1.11.1 releases file to “C:\PCL\1.11.1\bin” folder.

(2) Setup system environment variables: right click ‘This PC’ 🡪 ‘Properties’ 🡪 ‘Advanced

system settings’ 🡪 ‘Advanced’ 🡪 ‘Environment Variables’ 🡪 ‘User variables for name’ 🡪

‘Path’ 🡪 ‘Edit’

https://github.com/PointCloudLibrary/pcl/releases/tag/pcl-1.11.1

(3) Add the four below

1 %PCL_ROOT%\3rdParty\FLANN\bin

2 %PCL_ROOT%\3rdParty\VTK\bin

3 %OPENNI2_REDIST64%

4 C:\Program Files\PCL 1.11.1\bin

(4) Reboot your PC

Setup Visual Studio 2019 environments

(1) Start your Visual Studio 2019

(2) Create a new project

(3) Change solution configuration to ‘Debug’ + ‘x64’

(4) Create a new C++ source file

(5) Right click your ‘Project name’, opening the ‘properties’

(6) Click ‘Configuration Properties’ 🡪 ‘Debugging’ 🡪 ‘Environment’ 🡪 ‘Edit’

(7) Adding the four below in your ‘Environment’

1 PATH=C:\Program Files\PCL 1.11.1\\bin;

2 C:\Program Files\PCL 1.11.1\\3rdParty\FLANN\bin;

3 C:\Program Files\PCL 1.11.1\\3rdParty\VTK\bin;

4 C:\Program Files\OpenNI2\Tools

(8) Click ‘C/C++’ 🡪 ‘Language’ 🡪 ‘Conformance mode’ 🡪 choose ‘NO’

(9) Click ‘C/C++’ 🡪 ‘General’ 🡪 ‘SDL checks’ 🡪 choose ‘NO’

(10) Click ‘Apply’ and ‘OK’

(11) Click ‘Property Manager’ section

(12) Right click ‘Debug | x64’ and ‘Add New Project Property Sheet’

(13) Name your property sheet as ‘PCL1.11.1.props’ for future use and then ‘Add’

(14) Double click the new property sheet you just added

(15) Click ‘VC++ Directories’ 🡪 ‘Include Directories’ 🡪 ‘Edit’

(16) Add the seven below paths to your ‘Include Directories’

(17) Click ‘VC++ Directories’ 🡪 ‘Library Directories’ 🡪 ‘Edit’

(18) Add the six paths below to your ‘Library Directories’

(19) Click ‘C/C++’ 🡪 ‘Preprocessor’ 🡪 ‘Preprocessor Definitions’ 🡪 ‘Edit’

(20) Add the five definitions below to your ‘Preprocessor Definitions’

(21) Click ‘Linker’ 🡪 ‘Input’ 🡪 ‘Additional Dependencies’ 🡪 ‘Edit’

(22) Add the dependencies below to your ‘Additional Dependencies’ (you can simply copy

and paste below dependencies, but please double check the version of all

dependencies)

pcl_commond.lib;
pcl_featuresd.lib;
pcl_filtersd.lib;
pcl_iod.lib;
pcl_io_plyd.lib;
pcl_kdtreed.lib;
pcl_keypointsd.lib;
pcl_mld.lib;
pcl_octreed.lib;
pcl_outofcored.lib;
pcl_peopled.lib;
pcl_recognitiond.lib;
pcl_registrationd.lib;
pcl_sample_consensusd.lib;
pcl_searchd.lib;
pcl_segmentationd.lib;
pcl_stereod.lib;
pcl_surfaced.lib;
pcl_trackingd.lib;
pcl_visualizationd.lib;
vtkChartsCore-8.2-gd.lib;
vtkCommonColor-8.2-gd.lib;
vtkCommonComputationalGeometry-8.2-gd.lib;
vtkCommonCore-8.2-gd.lib;
vtkCommonDataModel-8.2-gd.lib;
vtkCommonExecutionModel-8.2-gd.lib;
vtkCommonMath-8.2-gd.lib;
vtkCommonMisc-8.2-gd.lib;
vtkCommonSystem-8.2-gd.lib;
vtkCommonTransforms-8.2-gd.lib;
vtkDICOMParser-8.2-gd.lib;
vtkDomainsChemistry-8.2-gd.lib;

vtkDomainsChemistryOpenGL2-8.2-gd.lib;
vtkdoubleconversion-8.2-gd.lib;
vtkexodusII-8.2-gd.lib;
vtkexpat-8.2-gd.lib;
vtkFiltersAMR-8.2-gd.lib;
vtkFiltersCore-8.2-gd.lib;
vtkFiltersExtraction-8.2-gd.lib;
vtkFiltersFlowPaths-8.2-gd.lib;
vtkFiltersGeneral-8.2-gd.lib;
vtkFiltersGeneric-8.2-gd.lib;
vtkFiltersGeometry-8.2-gd.lib;
vtkFiltersHybrid-8.2-gd.lib;
vtkFiltersHyperTree-8.2-gd.lib;
vtkFiltersImaging-8.2-gd.lib;
vtkFiltersModeling-8.2-gd.lib;
vtkFiltersParallel-8.2-gd.lib;
vtkFiltersParallelImaging-8.2-gd.lib;
vtkFiltersPoints-8.2-gd.lib;vtkFiltersProgrammable-8.2-gd.lib;
vtkFiltersSelection-8.2-gd.lib;
vtkFiltersSMP-8.2-gd.lib;
vtkFiltersSources-8.2-gd.lib;
vtkFiltersStatistics-8.2-gd.lib;
vtkFiltersTexture-8.2-gd.lib;
vtkFiltersTopology-8.2-gd.lib;
vtkFiltersVerdict-8.2-gd.lib;
vtkfreetype-8.2-gd.lib;
vtkGeovisCore-8.2-gd.lib;
vtkgl2ps-8.2-gd.lib;
vtkglew-8.2-gd.lib;
vtkGUISupportMFC-8.2-gd.lib;
vtkhdf5-8.2-gd.lib;
vtkhdf5_hl-8.2-gd.lib;
vtkImagingColor-8.2-gd.lib;
vtkImagingCore-8.2-gd.lib;
vtkImagingFourier-8.2-gd.lib;
vtkImagingGeneral-8.2-gd.lib;
vtkImagingHybrid-8.2-gd.lib;
vtkImagingMath-8.2-gd.lib;
vtkImagingMorphological-8.2-gd.lib;
vtkImagingSources-8.2-gd.lib;
vtkImagingStatistics-8.2-gd.lib;
vtkImagingStencil-8.2-gd.lib;
vtkInfovisCore-8.2-gd.lib;
vtkInfovisLayout-8.2-gd.lib;
vtkInteractionImage-8.2-gd.lib;
vtkInteractionStyle-8.2-gd.lib;
vtkInteractionWidgets-8.2-gd.lib;
vtkIOAMR-8.2-gd.lib;
vtkIOAsynchronous-8.2-gd.lib;
vtkIOCityGML-8.2-gd.lib;
vtkIOCore-8.2-gd.lib;

vtkIOEnSight-8.2-gd.lib;
vtkIOExodus-8.2-gd.lib;
vtkIOExport-8.2-gd.lib;
vtkIOExportOpenGL2-8.2-gd.lib;
vtkIOExportPDF-8.2-gd.lib;
vtkIOGeometry-8.2-gd.lib;
vtkIOImage-8.2-gd.lib;
vtkIOImport-8.2-gd.lib;
vtkIOInfovis-8.2-gd.lib;
vtkIOLegacy-8.2-gd.lib;
vtkIOLSDyna-8.2-gd.lib;
vtkIOMINC-8.2-gd.lib;
vtkIOMovie-8.2-gd.lib;
vtkIONetCDF-8.2-gd.lib;
vtkIOParallel-8.2-gd.lib;
vtkIOParallelXML-8.2-gd.lib;
vtkIOPLY-8.2-gd.lib;
vtkIOSegY-8.2-gd.lib;
vtkIOSQL-8.2-gd.lib;
vtkIOTecplotTable-8.2-gd.lib;
vtkIOVeraOut-8.2-gd.lib;
vtkIOVideo-8.2-gd.lib;
vtkIOXML-8.2-gd.lib;
vtkIOXMLParser-8.2-gd.lib;
vtkjpeg-8.2-gd.lib;
vtkjsoncpp-8.2-gd.lib;
vtklibharu-8.2-gd.lib;
vtklibxml2-8.2-gd.lib;
vtklz4-8.2-gd.lib;
vtklzma-8.2-gd.lib;
vtkmetaio-8.2-gd.lib;
vtkNetCDF-8.2-gd.lib;
vtkogg-8.2-gd.lib;
vtkParallelCore-8.2-gd.lib;
vtkpng-8.2-gd.lib;
vtkproj-8.2-gd.lib;
vtkpugixml-8.2-gd.lib;
vtkRenderingAnnotation-8.2-gd.lib;
vtkRenderingContext2D-8.2-gd.lib;
vtkRenderingContextOpenGL2-8.2-gd.lib;
vtkRenderingCore-8.2-gd.lib;
vtkRenderingExternal-8.2-gd.lib;
vtkRenderingFreeType-8.2-gd.lib;
vtkRenderingGL2PSOpenGL2-8.2-gd.lib;
vtkRenderingImage-8.2-gd.lib;
vtkRenderingLabel-8.2-gd.lib;
vtkRenderingLOD-8.2-gd.lib;
vtkRenderingOpenGL2-8.2-gd.lib;
vtkRenderingVolume-8.2-gd.lib;
vtkRenderingVolumeOpenGL2-8.2-gd.lib;
vtksqlite-8.2-gd.lib;vtksys-8.2-gd.lib;

vtktheora-8.2-gd.lib;
vtktiff-8.2-gd.lib;
vtkverdict-8.2-gd.lib;
vtkViewsContext2D-8.2-gd.lib;
vtkViewsCore-8.2-gd.lib;
vtkViewsInfovis-8.2-gd.lib;
vtkzlib-8.2-gd.lib;
%(AdditionalDependencies)

(23) Click ‘Apply’ and ‘OK’

(24) Save as the Property sheet as ‘PCL1.11.1.props’. When you want to create a new

project, you can just simply import this ‘Property sheet’ to your new project rather

than setup again.

(25) Congratulations, the PCL setup is done. Start your PCL adventure now.

Appendix C

Experimental Point Cloud Data

 Unity interface

To test the general performance of different pipelines on point cloud registration with

different noises, we collected experiment data in Unity with below rotation and translation:

● Translation:

(
𝑥

𝑦 𝑧
) = (

+3

0 0
)

● Rotation:

(
𝑥

𝑦 𝑧
) = (

0

+30° 0
)

Experimental data

Then, we captured point cloud data with different noises at the source viewpoint and target

viewpoint as below:

References

[1] A. Flint, A. Dick, and A. Hengel, “Thrift: Local 3D Structure Recognition”, in 9th Biennial

Conference of the Australian Pattern Recognition Society on Digital Image Computing Techniques

and Applications, Dec. 2007, pp. 182–188.

[2] Yu Zhong, Intrinsic shape signatures: “A shape descriptor for 3d object recognition”,

in: IEEE International Conference on Computer Vision Workshops, 2010, pp.

689–696.

[3] R. B. Rusu, N. Blodow, Z. C. Marton, M. Beetz, “Aligning point cloud views using

persistent feature histograms”, in: Ieee/rsj International Conference on Intelligent

Robots and Systems, 2008, pp. 3384–3391.

[4] R. B. Rusu, N. Blodow, M. Beetz, “Fast point feature histograms (fpfh) for 3d

Registration”, in: IEEE International Conference on Robotics and Automation,

2009, pp. 1848–1853.

[5] A. E. Johnson, M. Hebert, “Surface matching for object recognition in complex

3-d scenes”, Image and Vision Computing 16 (9-10) (1998) 635–651.

[6] F. Tombari, S. Salti, L. D. Stefano, “Unique signatures of histograms for local

surface description”, in: European Conference on Computer Vision Conference on

Computer Vision, 2010, pp. 356–369.

[7] F. Tombari, S. Salti, L. D. Stefano, A combined texture-shape descriptor for

enhanced 3d feature matching 263 (4) (2011) 809–812.

[8] A. Zeng, S. Song, Niener, Matthias, M. Fisher, J. Xiao, T Funkhouser. “3DMatch: Learning

Local Geometric Descriptors from RGB-D Reconstructions”, in: IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2017.

[9] Radu Bogdan Rusu, Nico Blodow, Michael Beetz. “Fast Point Feature Histograms (FPFH) for

3D registration”, in: IEEE International Conference on Robotics and Automation, 2009.

[10] A. Dai, M. Nießner, M. Zollh öfer, S. Izadi, and C. Theobalt. Bundlefusion: Real-time globally

consistent 3d reconstruction using on-the-fly surface re-integratio, 2016.

[11] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,

D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon. Kinectfusion: Real-time

dense surface mapping and tracking. In Mixed and augmented reality (ISMAR), 2011 10th IEEE

international symposium on, pages 127–136. IEEE, 2011.

[12] M. Nießner, M. Zollh öfer, S. Izadi, and M. Stamminger. Real-time 3d reconstruction at scale

using voxel hashing. ACM Transactions on Graphics (TOG), 32(6):169, 2013.

[13] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3D ShapeNets: A deep

representation for volumetric shapes. 2015.

[14] J. Xiao, A. Owens, and A. Torralba. SUN3D: A database of big spaces reconstructed using

SfM and object labels. 2013.

[15] A. V. Segal, D. Haehnel, and S. Thrun, “Generalized-ICP”, in: Robotics: Science and Systems

2009

[16] Y. Chen, G. Medioni. “Object Modeling by Registration of Multiple Range Images”, Proc. of

the 1992 IEEE Intl. Conf. on Robotics and Automation, pp. 2724-2729, 1991.

