KTH ROYAL INSTITUTE
OF TECHNOLOGY

Degree Project in Electrical Engineering

30 credits

Maximizing the performance of
point cloud 4D panoptic
segmentation using AutoML
technique

TENG MA

Stockholm, Sweden, 2022

b]

Maximizing the performance of
point cloud 4D panoptic
segmentation using AutoML
technique

TENG MA

Master’'s Programme, ICT Innovation, 120 credits
Date: December 8, 2022

Supervisors: Sara Afshar, Sung Ki Won
Examiner: Fredrik Kilander

Host company: Volvo CE
Swedish title: Maximera prestandan fér punktmoln 4D panoptisk segmentering
med hjélp av AutoML-teknik

© 2022 Teng Ma

Abstract | i

Abstract

Environment perception is crucial to autonomous driving. Panoptic
segmentation and objects tracking are two challenging tasks, and the
combination of both, namely 4D panoptic segmentation draws researchers’
attention recently. In this work, we implement 4D panoptic LiDAR
segmentation (4D-PLS) on Volvo datasets and provide a pipeline of data
preparation, model building and model optimization.

The main contributions of this work include: (1) building the Volvo datasets;
(2) adopting an 4D-PLS model improved by Hyperparameter Optimization
(HPO). We annotate point cloud data collected from Volvo CE, and take a
supervised learning approach by employing a Deep Neural Network (DNN)
to extract features from point cloud data. On the basis of the 4D-PLS model,
we employ Bayesian Optimization to find the best hyperparameters for our
data, and improve the model performance within a small training budget.

Keywords

LiDAR perception, 4D panoptic segmentation, Hyperparameter Optimization,
Deep learning, Automated Machine Learning.

ii | Abstract

Sammanfattning | iii

Sammanfattning

Miljouppfattning dr avgorande for autonom korning. Panoptisk segmentering
och objektsparning dr tvd utmanande uppgifter, och kombinationen av bada,
namligen 4D panoptisk segmentering, har nyligen uppméarksammat forskarna.
I detta arbete implementerar vi 4D-PLS pd Volvos datauppsittningar
och tillhandahéller en pipeline av dataforberedelse, modellbyggande och
modelloptimering.

De huvudsakliga bidragen frin detta arbete inkluderar: (1) bygga upp
Volvos datauppsittningar; (2) anta en 4D-PLS-modell forbattrad av HPO. Vi
kommenterar punktmolndata som samlats in frdn Volvo CE och anvinder ett
Overvakat larande genom att anvinda en DNN for att extrahera funktioner
frdn punktmolnsdata. P4 basis av 4D-PLS-modellen anvinder vi Bayesian
Optimization for att hitta de bdsta hyperparametrarna for var data och forbéttra
modellens prestanda inom en liten utbildningsbudget.

Nyckelord

LiDAR-uppfattning, 4D-panoptisk segmentering, hyperparameteroptimering,
djupinldrning, automatiserad maskininldrning.

iv| Sammanfattning

Acknowledgments | v

Acknowledgments

I would like to thank Mohammad, Sara, Ali, Masoud from Volvo CE for their
help and guidance. I would like to thank Ki Won and Fredrik from KTH for
their detailed comments on the thesis writing. I also would like to thank my
parents and friends for the support they give to me.

Stockholm, December 2022
Teng Ma

vi | Acknowledgments

Contents | vii

Contents

1 Introduction 1
1.1 Background 2
1.2 Problem 3
1.3 Purpose e 3
1.4 Goal 3
1.5 Benefits, Ethics and Sustainability 4
1.6 Methodology 4
1.7 Delimitations 4
1.8 Structure of thethesis 5

2 Theoretical Background 7
2.1 An Introduction to Point Cloud Data 7
2.2 Point Cloud Segmentation 8
2.3 Deep Learning in Point Cloud Data 10

2.3.1 An Introduction to Deep Learning 10
2.3.2 Point Cloud Data Representation 10
2.4 Multiple Object Tracking 11
2.5 Automated Machine Learning 11
2.5.1 Hyperparameter Optimization 12
2.5.2 Meta-learning oL 13
2.5.3 Neural Architecture Search 13
26 RelatedWork 13
2.6.1 Point cloud Semantic Segmentation 13
2.6.2 Multi-Object Tracking and Segmentation 15
2.6.3 4D Panoptic Segmentation 16
2.6.4 Hyperparameter Optimization Methods 16

2.6.5 Hyperparameter Optimization Frameworks 18

viii | Contents

3 Methods

3.1 4D Panoptic LiDAR Segmentation Model
3.1.1 Network Backbone
3.1.2 Instance Representation
3.1.3 Network Training
314 Inference,
3.2 Hyperparameter Optimization
3.2.1 Problem Statement
322 SearchSpace
3.2.3 Bayesian Hyperparameter Optimization
3.3 Dataset Preparation
3.3.1 VolvoDatasets
3.3.2 Point Cloud Annotation
3.3.3 DataPreprocessing

3.4 Evaluation

3.4.1 Qualitative Evalutaion
3.4.2 Quantitative Evaluation.
3.5 ExperimentsSetup

4 Result and Analysis
4.1 Experiments on the Pre-training Stage
4.2 Experimentresults

5 Conclusions and Future work
5.1 Conclusions

5.2 Limitations

53 Futurework

References

A Documentation

A.1 Software Installation
A.2 Data Annotation
A.3 Network Fine-tuning

21
21
21
24
24
25
25
25
26
26
29
29
29
30
30
30
31
33

35
35
37

List of Figures | ix

List of Figures

1.1

2.1
2.2

2.3

3.1

3.2

33

34

4.1
4.2

4D panoptic segmentation displayed on 18 consecutive frames
of point cloud data from VolvoCE

LiDAR point cloud data collected by VolvoCE
Comparison between Semantic segmentation (a) and Panoptic
segmentation (b). (b) contains three different bounding boxes
for instances of people (red points)
Anoverview of AutoML

Overall Structure of the 4D-PLS model. First merge multiple
frames to generate a 4D volume, which is then processed by
an encoder-decoder network with 4 outputs. The semantics
are predicted by the semantic head S, object instances are
identified and tracked by integrating the object center head O,
the variance head >, and the point embeddings head .
KPConv blocks. The Batch normalization in the shortcut is to
adjust input feature dimension, only used when D;,, # D,;.
Overall Structure of the KPFCNN model. Input N points
(X, y, z) concatenated with fearures (f1, f2), the encoder part
uses KPConv blocks for feature extraction and downsampling,
the feature map dimension is shown in green near the
corresponding layers. The decoder part upsamples from the
previous layer and generates 4 output matrixs with height N
and width labeled above the blocks respectively. The points
are not displayed after the firstlayer.
Segmentationresults

Learning curve of baseline model (Loqss) -« -« « v o v ..
Learning curves of trials (accuracy)

22

23

23

x| List of Figures

4.3

4.4
4.5

Learning curves of trials (accuracy). The gaps in epoch 40
denote a change of loss function during model training 37
Hyperparameter Importance 38
Visulizations of the results from baseline model and searched
model. The only difference lies on the top left of the figure,
where the first trunk on the right is predicted as grass (green)
by the searchedmodel 39

List of Tables | xi

List of Tables

3.1

32

4.1

4.2

Hyperparameters to be tuned. * The learning rate in baseline
model decays by (0.1)z0 every epoch from 0.01, namely
tenfold shrinks every 200 training epochs. 26
Comparison between labelingtools 30

Performance of baseline model and searched model (pre-
training stage) e e e 36
Comparison between the baseline model and the searched model 38

xii | List of Tables

List of acronyms and abbreviations | xiii

List of acronyms and abbreviations

4D-PLS 4D panoptic LiDAR segmentation

Al Artificial Intelligence
AutoML Automated machine learning

CNN Convolutional Neural Network
DNN Deep Neural Network

EI Expected Improvement

GPR Gaussian Process Regression
HPO Hyperparameter Optimization
IoU Intersection over Union

LiDAR Light Detection And Ranging

LSTQ LiDAR Segmentation and Tracking Quality
MLP Multi-layer perception
MOT Multiple Object Tracking

MOTS Multi-Object Tracking and Segmentation
NAS Neural Architecture Search
RADAR RAdio Detection and Ranging

TPE Tree-structured Parzen Estimator

xiv | List of acronyms and abbreviations

Introduction | 1

Chapter 1

Introduction

Scene understanding is one of the main tasks in the field of autonomous
driving. To recognize the surrounding objects and environment, the perception
module of the autonomous driving system interprets data collected from
sensors such as camera, RAdio Detection and Ranging (RADAR) and Light
Detection And Ranging (LiDAR). With more high-quality point cloud data
from LiDAR available, many LiDAR-based studies have been conducted on
related tasks such as object detection, semantic segmentation, and instance
segmentation.

Notably, panoptic segmentation, as a popular scene understanding problem
that first emerged in the 2D image domain [1], aims at a holistic solution by
unifying semantic and instance segmentation. However, segmentation in 3D
point clouds is not a trivial task for the reason that point cloud data are usually
noisy, sparse, and unorganized [2]. Furthermore, to interact with the dynamic
environments, tracking objects over time is also important for autonomous
vehicles. 4D panoptic segmentation [3] merges panoptic segmentation and
object tracking, and extends scene understanding to the 4D spatio-temporal
domain. Figure 1.1 shows the 4D panoptic segmentation results on a sequence
of point cloud scans.

In recent years, Deep Neural Network (DNN) has become the main method of
object detection and segmentation problems in both 2D images and 3D point
clouds. Designing a satisfactory network for a specific task is usually time-
consuming, due to a wide range of parameters that need to be set manually
before network training. These parameters are called hyperparameters, and
the selection of which is critical to network performance [4].

2| Introduction

..........

Figure 1.1: 4D panoptic segmentation displayed on 18 consecutive frames of
point cloud data from Volvo CE

1.1 Background

Artificial Intelligence (Al) takes us one step closer to autonomous driving.
Learning-based methods has accelerated the research process in many
fields, in particular the perception module of autonomous systems. Volvo
Construction Equipment (Volvo CE) is one of the largest manufacturers of
construction equipment in the world. Volvo CE is committed to building
safer and smarter construction machines by investing in the research and
development of autonomous vehicles for construction purposes [5]. To ensure
the safety of people, which is the top priority of autonomous driving, 3D
perception models are required to achieve high accuracy and low latency at the
same time [6]. It is essential to develop cost-efficient and high-performance
perception modules. In the construction domain, a self-driving machine can
detect and recognize obstacles, humans, and other moving machines in the
surrounding area by continuously interpreting sensory data in 3D space and
time. 4D panoptic segmentation is a way to understand temporal semantic
scenes by predicting semantics for each point in point clouds, and a unique
temporally consistent instance ID for each object.

Deep learning based methods achieve state of the art in point cloud semantic
segmentation tasks, while hyperparameters selection of deep neural networks
remains a challenging problem. Tuning the network manually or using
simple grid search consumes a lot of human effort and time. Automated

Introduction | 3

machine learning (AutoML) techniques help finding suitable hyperparameters
automatically and maximize the model’s performance.

1.2 Problem

Reliable environmental perception is a prerequisite for safe operations of
automated vehicles. Understanding the semantics of the environments and
tracking movable objects are both necessary for subsequent tasks, such as path
planning and collision avoidance. Research questions:

* How torealize panoptic segmentation and multiple object tracking using
DNN on LiDAR point cloud datasets collected from Volvo?

* How to find the hyperparameters that maximize the performance of the
deep neural network?

1.3 Purpose

The purpose of this thesis was to improve the LiDAR perception system of
construction vehicles using Al technologies.

This project was conducted in Volvo Construction Equipment, as part of the
development of autonomous driving technology in construction scenarios.

1.4 Goal

The goal of this project was to provide a whole pipeline of 4D panoptic
segmentation on point cloud data, including data labeling, network training,
and hyperparameter optimization. This was divided into the following three
sub-goals.

1. Subgoal 1
Preparing Volvo point cloud dataset, including data collection, data
preprocessing and data labeling via open source data annotation tools.

2. Subgoal 2
Building a deep learning model for 4D panoptic segmentation.

3. Subgoal 3
Maximizing the performance of the deep neural network by optimizing
hyperparameters with AutoML techniques.

4 | Introduction

Expected result: the trained model gives instance IDs and semantic labels for
each point of a point cloud sequence.

1.5 Benefits, Ethics and Sustainability

The improvement of perception ability promotes the development of
autonomous driving. More self-driving trucks will be involved in construction
activities and help to conduct tasks more efficiently and safely. One ethic
issue here is safety. Accurate perception of the environment can reduce the
probability of accidents caused by vehicles. Evidence shows that autonomous
driving is safer than manually driving [7]. From a sustainability perspective,
self-driving vehicles contribute to lower emissions and reduction of energy
consumption [8].

1.6 Methodology

With data from Volvo, a data-driven model was adopted in this project.
Supervised learning, to be specific, deep learning method was used to achieve
the goals. Extensive research [9, 10, 11] shows that deep neural network
is a powerful tool for feature extraction, especially for complex tasks such
as semantic segmentation where designing handcrafted features for different
kinds of objects are extremely hard.

The assumption was that an end-to-end deep neural network could fulfill
4D panoptic segmentation task, and the performance of network could be
improved after hyperparameter optimization. Quantitative and qualitative
analysis of the obtained results is available, including the visualizations of
results and the model performance measured by some evaluation metrics.

1.7 Delimitations

This thesis work focuses on 4D panoptic segmentation of point clouds. Due to
the limited time of this degree project, the deep learning model structure will
be built on the basis of the first 4D panoptic LiDAR segmentation (4D-PLS)
model [3], and more efforts are put in model adaptation and optimization on
Volvo point cloud dataset.

Introduction | 5

1.8 Structure of the thesis

In chapter 2, theoretical background knowledge is introduced including basic
concepts and concise summary of related work. In chapter 3, the methods used
in this degree project are described in detail. Experiments results are clearly
presented and compared in chapter 4. In chapter 5, conclusions are drawn by
reviewing the whole project, followed by the future work.

6 | Introduction

Theoretical Background |7

Chapter 2

Theoretical Background

This chapter provides basic background information about point cloud data,
point cloud segmentation, multiple object tracking, and automated machine
learning. Additionally, this chapter describes related works in point cloud
based scene understanding and object tracking, as well as hyperparameter
optimization.

2.1 An Introduction to Point Cloud Data

Point cloud data contains information of a set of points in three-dimensional
space. Each point is represented as a vector of its 3D Cartesian coordinates
(X, vy, z), plus other information such as color (RGB), reflection intensity
(Intensity) etc. Three main properties of the points are stated as follows [12]:

* Being unordered, which means that rearranging the input order of all
points causes no change to a point cloud.

» There are correlations between points that reveal the features of local
structures.

* Invariance under transformations. The property of a point cloud
should not be changed after certain transformations (e.g. rotating and
translating) applied to the whole point cloud.

Point cloud data can be acquired from LiDAR, RADAR, RGB-D cameras, or
derived from images using multi-view stereo vision algorithms [13].

With high precision LiDAR point cloud data available, high resolution
LiDARs have been deployed on autonomous vehicles as a part of the
perception system. One advantage of LiDAR compared to cameras is the

8| Theoretical Background

robustness to light changes in the environments, for that it detects ranges by
actively emitting laser pulses. However, due to the large range of outdoor
scenes, the point cloud data from LiDAR mounted on the car is usually sparse,
which leads to a loss of some information. Figure 2.1 is one scan from LiDAR,
which shows the sparsity of far points.

Figure 2.1: LiDAR point cloud data collected by Volvo CE

2.2 Point Cloud Segmentation

Segmentation of point clouds has decades of history [14]. Before effective
supervised learning methods were widely used, point cloud segmentation
was to cluster points with similar characteristics into homogeneous regions.
Inspired by intensive research in computer graphics and computer vision,
many approaches were proposed to segment point cloud data. [2] summarizes
methods for point cloud segmentation in earlier years.

Instead of only clustering points, researchers took a step further and tried to
infer a semantic label for every point. As a result, assigning each 3D point
a semantic label, i.e. semantic segmentation has become the new target in
point cloud segmentation. After many explorations in supervised machine
learning methods including Support Vector Machine [15], Gaussian Mixture
Model [16], Random Forest [17] and statistical contextual models, such as
Conditional Random Field [18], deep learning based methods now achieve
the state of the art for point cloud segmentation.

Theoretical Background | 9

In the realm of robotics, information at the instance level is crucial for
robots/self-driving cars to interact with the environment and make right
decisions [3]. Instance segmentation is a technique to realize detection
and semantic segmentation of objects at the same time, by giving different
labels for separate instances belonging to the same class [19]. On the basis of
semantic segmentation and instance segmentation, panoptic segmentation
as a popular scene understanding problem that emerged recently, is to predict
semantics of foreground countable objects such as people, animals, tools, and
amorphous regions or background objects such as grass, sky, road [1]. For
point cloud data, the task of panoptic segmentation is to assign each point a
semantic label and instance ID if the point belongs to an object (see Figure 2.2).

e e

e
=
SRR

2 N

(a) Semantic segmentation

T

S :
- o I Rt R

TR \\é

(b) Panoptic segmentation

Figure 2.2: Comparison between Semantic segmentation (a) and Panoptic
segmentation (b). (b) contains three different bounding boxes for instances
of people (red points)

10| Theoretical Background

2.3 Deep Learning in Point Cloud Data

As a deep neural network was adopted in the project, this part briefly reviews
deep learning, and elaborate how point cloud data is represented in deep neural
networks.

2.3.1 An Introduction to Deep Learning

Problems that can be described formally are easy to solve by programming
following a series of mathematical rules. It turns out that the real challenge
for Al is solving tasks that are easy for people to perform but hard for people
to formally describe [20]. Deep learning allows computers to solve intuitive
problems, such as recognizing spoken words or faces in images, by building
computational models of multiple process layers and learning from data.
Facilitated by the improvement of computation power and a large amount of
data available, deep learning has achieved the state-of-the-art in a variety
of tasks in computer vision and natural language processing. Particularly,
deep convolutional neural networks have fueled great strides in 2D image
processing tasks, such as image classification [9], semantic segmentation [21]
and object detection [10]. The tremendous success of Convolutional Neural
Network (CNN) in the 2D image domain promoted the development of 3D
CNN modules for point cloud data.

2.3.2 Point Cloud Data Representation

However, deep neural networks designed for 2D raster images cannot be
directly applied to point cloud segmentation, due to the fact that point cloud
data is disordered and unstructured [14]. Based on the way data is represented,
existing methods can be broadly divided into three categories: point-based,
voxel-based, and projection-based methods.

Point-based methods like Pointnet series [12, 22] process point cloud data
directly and keep the original information preserved to the greatest extent. The
problem is that point-wise operation requires large memory space and a lot of
inference time, especially applied to outdoor scenes.

In voxel-based methods, a point cloud is first transformed into regular 3D
volumetric grids and then processed in 3D convolutions [23]. Considering that
vanilla 3D convolution is also both memory and computationally intensive,
many new approaches like Cylinder3D [24] emerged.

Projection-based methods project point clouds onto a regular 2D grid

Theoretical Background | 11

representation using sphere project [25] or scan unfolding [26], in order to
use well researched 2D convolution architectures. Bird’s eye view is also an
option of projection [27].

Recently, some methods fuse two or more different views together, for
example, fusing bird’s eye view and range images, or point and voxel together.
More details are introduced as related work in section 2.6. In another direction,
graph convolution networks emphasize edge relationships instead of points
relative positions. EdgeConv [28] constructs a directed graph using k-nearest
neighbor, combines global and local features by integrating point position and
the relative distances of surrounding points into feature encodings.

2.4 Multiple Object Tracking

Multiple Object Tracking (MOT) is another well researched topic in the
field of computer vision. It relies on objects detection results from instance
segmentation, and grounds tasks such as pose estimation, behavior analysis
and understanding that play important roles in human computer interaction,
virtual/augmented reality, surveillance and autonomous driving. The tasks
of MOT are mainly divided into locating multiple objects, maintaining their
identities, and generating their respective trajectories in a continuous sequence
of frames [29]. Compared with single object tracking, MOT faces a much
more complicated situation where multiple objects in one category could be
entangled. Similarly, deep learning based MOT methods come to the top in
the public benchmark test [29, 30].

2.5 Automated Machine Learning

Machine learning, especially deep learning methods have brought a revolution
in computer vision, natural language processing and many other application
domains. However, many machine learning models perform well only with the
proper selections of network architecture, training procedures, regularization
methods, and other hyperparameters in the model. Making a series of right
decisions is repetitive and tedious, and it takes a lot of time and energy
for engineers, even experts sometimes, let alone people who want to adopt
machine learning methods but do not have the resources to learn about the
technologies behind it in detail. AutoML aims to make these decisions in a
data-driven, objective, and automated way: the user simply provides data, and
the AutoML system automatically chooses the approach that performs best

12| Theoretical Background

for this particular application [31]. An AutoML framework aims to automate
the whole pipeline of machine learning including data preparation, feature
selection, model generation and evaluation, so that researchers can pay more
attention to the problem itself. Figure 2.3 give a general grasp of what an
AutoML framework can do.

NAS HPO Meta-learning AutoML

only architecture including architecture, a specialization of a framework for
hyperparameter training hyperparameter, AutoML automating machine
and other hyperparameter learning processes

Figure 2.3: An overview of AutoML

2.5.1 Hyperparameter Optimization

The most common problem that AutoML considers is Hyperparameter
Optimization (HPO). The goal of HPO is find the hyperparameters that
maximize or minimize the objective function. It is usually a non-
convex optimization problem for a machine learning model As machine
learning models become more and more complex, hyperparameters could be
continuous, discrete, categorical, and conditional. Tuning hyperparameters
automatically not only reduces human effort, but also improves the
performance of machine learning models and makes these models more
reproducible. In particular, key hyperparameters of deep learning models can
be roughly divided into three categories [32]:

* Architecture design hyperparameters, e.g. the number of hidden layers
and the number of neurons.

» Training settings, e.g. learning rate, drop-out rate, batch size and the
number of epochs.

Theoretical Background |13

* Function types, e.g. loss function type, optimizer type.

Due to the limited time and computation resources, this project focus on HPO
using AutoML techniques.

2.5.2 Meta-learning

Meta-learning, or learning to learn can be seen as a subset of AutoML. Meta-
learning is proposed to promote machine learning methods in tasks where the
data is rare and computation resources are insufficient. Considering that our
brain can neither store huge amount of data nor conduct complex computation
compared to computer, we perform much better in many learning tasks than
computers. One of the reasons is that we human learn from experiences. Meta-
learning is a data-driven process of improving upcoming learning performance
by distilling the prior knowledge from experience [33].

2.5.3 Neural Architecture Search

Recently Neural Architecture Search (NAS) attracts a lot of attention due
to the wide application of deep learning since manually designing neural
architectures is time-consuming and error-prone [34]. Searching a neural
architecture follows this pattern: first, define the search space, then find
a search strategy to select an architecture configuration and evaluate the
performance of the searched network, which is returned to the search strategy
for the next searching loop. It is one of the most challenging tasks for that the
design space is extremely large and a single evaluation of a neural network can
take a very long time.

2.6 Related Work

This section briefly reviews previous deep learning based methods in point
cloud semantic segmentation, LiDAR-based object detection/segmentation,
and tracking, as well as some well-established HPO algorithms and
frameworks.

2.6.1 Point cloud Semantic Segmentation

Semantic segmentation of 3D point clouds is to infer the label of each three-
dimensional point. As mentioned in 2.3.2, previous mainstream deep learning

14| Theoretical Background

methods employed on point cloud data can be classified as point-based,
voxel-based, projection-based, or fusion methods which combine 2 or 3 data
representations together.

Point-based networks can be further subdivided into point-wise Multi-layer
perception (MLP) networks and point-wise convolution networks where
convolution kernels for points are explicitly defined. Pointnet [12] first
proposed a network structure that can directly process point cloud data.
MLP is used on every point followed by a global max-pooling. The shared
MLP encodes points and max-pooling captures the global information. The
performance of Pointnet is limited since no local spatial relationships are
learned. To make up for this deficiency, Pointnet++ [22] introduced set
abstraction as an imitation of CNN block to learn the local information. MLP
is a powerful feature extractor, yet it makes networks hard to converge and
increases the complexity after combining point convolutions.

To get rid of the intermediate representation of an MLP, KPConv is an explicit
convolution kernel where the weights carried by points are directly learned.
Kernel points with a learnable weight matrix are regularly placed in a sphere
space, correlated with the distance between neighbors and the point where
KPConv is applied to. A deformable version of KPConv inspired by [35] is
also presented, in this case the position of kernel points are also learned from
the network. KPConv outperforms other methods with well-designed point
convolution kernels such as [36, 37].

For large outdoor scenes, point-based methods cannot run in real time due to
computational and memory limitations. In exchange for less processing time,
RandLLA-Net [38] uses random sampling with a local feature aggregation,
which is a compensation for the information loss brought by random operation
by progressively increasing the receptive field for each 3D point.
Voxel-based methods kicked off with these early ideas [23, 39, 40] that
intuitively generalized 2d convolution operation to 3D space. Researchers
transformed the point clouds into voxels and applied vanilla 3D convolutions,
which cost more memory and computation resources than 2D convolutions.
Early volumetric methods lower the resolution of voxels as a compromise of
the resource deficiency, and suffer serious information loss and act poorly
in outdoor scenes. More recently, methods [41, 42] built on sparse 3D
convolutions accelerate the 3D convolution operation by utilizing the sparsity
of points. Cylinder3D [43] partitions point clouds in the form of cylindrical
grids that adapt to the density difference of points in space, and reaches
decent performance in a different way within acceptable runtime and memory
consumption. As the state-of-the-art of voxel based methods, AF2S3Net adds

Theoretical Background | 15

two novel attention blocks named Attentive Feature Fusion Module(AF2M)
and Adaptive Feature Selection Module(AFSM) to the baseline model of
MinkNet42 [41], and optimize the network with a mixed loss function.
Projection-based methods project point clouds onto 2D images and adopt
2D CNN for semantic segmentation, then project the predictions back to 3D
point clouds. Most existed methods project the point cloud into range images
[44, 25, 45] or bird’s eye views [27]. SqueezeSeg [44] and RangeNet++ [25]
use spherical projection to obtain the intermediate range images, while [26]
advocates scan unfolding that yields better results on ego-motion corrected
data. Salsanext [45], the next version of Salsanet [46] with an improved
encoder-decoder structure and loss function, is the most successful attempt
among projection-based methods so far.

Multi-view Fusion aims to leverage information from different views and
overcome the shortcomings in single view methods: Voxel-based methods
suffer information loss caused by the low resolution of voxels. Point-based
methods spend too much runtime on structuring the irregular point cloud
data [47]. Projection-based methods ignore depth information that reveals
3D geometric features of points. Multi-view fusion is a promising direction
that could abandon the drawbacks in single view methods. FusionNet [48]
aggregates voxel features by sparse convolution layers and point features from
the voxel-based “mini-PointNet”, which saves a lot of time finding neighbours
for points. SPVCNN [6] replace the voxel convolution in PVCNN [47] with
sparse convolution, further reduces the runtime and achieves relatively high
accuracy on the large-scale point cloud. RPVNet [49] is a deep framework that
allows interactions between range images, points and voxels during training,
using an RPV interaction mechanism in a multi-view fusion.

2.6.2 Multi-Object Tracking and Segmentation

Instance segmentation replaces the masks (bounding boxes) in object detection
with finer ones (pixels), in order to obtain pixel level detection with semantic
meanings. Many successful methods [11, 50, 51] follow a top-down scheme:
first, locate the bounding box of each instance, and then perform semantic
segmentation inside the box to obtain the mask of each instance; Other
methods [52, 53] take a bottom-up approach by grouping pixels belonging
to the same instance.

As the accuracy of instance segmentation increases, MOT is under a
transformation from coarse bounding box level tracking to fine pixel level

16 | Theoretical Background

tracking. Multi-Object Tracking and Segmentation (MOTS) considers
instance segmentation and MOT together, overcomes the ambiguities caused
by the bounding box representation and thus gain further improvements
[54]. A tracking-by-detection paradigm is adopted in many MOT methods,
the idea of which is to first detect objects independently in each frame
and then associate detection results across time. Such models are usually
computationally demanding due to employing different networks for object
detection and data association separately. Recently, proposed an end-to-end
bottom-up approach was proposed by modeling a video clip as a 3D spatio-
temporal volume, achieved good performance with less computation [55].

2.6.3 4D Panoptic Segmentation

4D Panoptic Segmentation was first described in [3] as a beginning
of temporal LiDAR panoptic perception, which supplements background
semantic information for multi-object tracking and segmentation on LiDAR
point cloud sequences. The model operates in a 4D spatio-temporal volume
which is formed by merging multiple consecutive point clouds together,
predicts semantic labels of points and parameter maps used for cluster points
into instances. The authors chose KPConv [56] as the only encoder network
and trained the model in an end to end fashion. A new evaluation metric,
LiDAR Segmentation and Tracking Quality (LSTQ) metric is provided in the
paper.

Another direction is following the tracking-by-detection paradigm, namely
associate instances detected in panoptic segmentation across time. An instance
association approach inspired by contrastive learning techniques was proposed
lately [57]. The authors employed an off the shelf panoptic segmentation
methods, DS-Net, as the panoptic backbone, followed by a well-designed
contrastive aggregation network (CA-Net) which pushes encodings of the
same instance in different frames lie close together, meanwhile far from
encodings belonging to other instances. In addition to LSTQ metric, mloU
and mAQ are also commonly used metrics for evaluation of 4D Panoptic
Segmentation.

2.6.4 Hyperparameter Optimization Methods

Due to the large range of hyperparameter configurations, simple methods such
as greedy search and babysitting (manually tuning) are not feasible within
certain constraints/budgets. Gradient-based methods are rarely seen in HPO,

Theoretical Background |17

for that the gradient of the loss function with respect to hyperparameters are
available only if the hyperparameters are continuous.

Grid Search is a basic HPO method with a clear mathematical expression.
Grid search evaluates the Cartesian product of a finite set of hyperparameters,
the values of which are defined by users. Because the computation consumed
grows exponentially when the number of hyperparameters increase, grid
search suffers from the curse of dimensionality. Another issue with grid search
is that increasing the resolution of discretization also significantly increases
the computation required. For the reasons mentioned above, to work with
grid search, users have to narrow down the search space according to their
professional knowledge in advance.

Random Search is a simple and improved alternative to grid search [58]. As
the name implies, random search hyperparameter configurations at random
until the search budget is depleted. Different from grid search where the
budget for evaluating a configuration is fixed, random search can assign
budgets independently. This brings significant advantages when some
hyperparameters are much more important than others. Since grid search
arrange each trial asynchronously and there is no communication between
works, it allows for easier parallelization. Another benefit of random search is
its flexibility of resource allocation. It can be easily extended with additional
samples; in contrast, the number of points on a grid must be determined
beforehand [59].

Although random search is more effective than grid search in most cases, it is
still a computationally intensive method. In the early stages of HPO, random
search is recommended to rapidly narrow the search space before using a
guided algorithm to obtain a finer result. Random search is frequently used as
the baseline of HPO to assess the effectiveness of newly designed algorithms.
In general, random search consumes more time and computational resources
than other guided search methods.

Bayesian optimization is a traditional global optimization approach that
achieves state-of-the-art results in tuning hyperparameters of deep neural
networks. Bayesian optimization methods search for global optimum by
analysing past results. A probabilistic surrogate model of the objective
function is employed to fit all currently-observed searching results, followed by
an acquisition function that chooses points to be evaluated next iteration. BO
models balance the exploration (expand search to areas that are never sampled
from before) and exploitation (dig in the promising regions based on current
information) processes in order to find the most likely optimal locations while
avoiding missing better configurations in unknown areas [60]. Guided by

18| Theoretical Background

past trials, on the one hand, Bayesian optimization models reach the desired
result faster, on the other hand, they are more difficult to parallelize due to
the sequential historical data. Gaussian process (GP) [61], random forest (RF)
[62], and the tree-structure Parzen estimator (TPE) [63] are common choices
for surrogate models. Gaussian process regression works well on continuous
functions and hyperparameters, yet many hyperparameters are categorical in
a DNN. As a result, BO-RF and BO-TPE are more suitable for tuning deep
neural networks.

Population-based methods utilize metaheuristic algorithms such as genetic
algorithms, evolutionary algorithms, particle swarm optimization to find
global optimum by generating and iterating over a population, i.e., a set of
configurations. These methods can be easily parallelized since theoretically
the evaluation of N individuals in a population can be allocated to N threads
at most.

Nowadays, training a DNN with a single hyperparameter set on large datasets
can easily take several hours and up to several days. One major problem to
be addressed when applying HPO to DNN is to shorten the execution time.
One common approach to speed up the optimization process is reducing the
datasets and training the model in a low-fidelity manner, for example, by using
a subset or training with fewer iterations.

Multi-fidelity Optimization is an excellent technique to save time. One basic
idea here is not evaluating every hyperparameter configuration after training
with full iterations or whole datasets, since quite a few configurations are
far from the optimum and can be dropped during searching. Early-stopping
based on the learning curve is a well-known way to filter configurations.
Another way is using bandit-based Algorithms such as successive halving [64],
which eliminates half of the poorly-performing hyperparameter configurations
each iteration. BOHB [65] Bayesian optimization and Hyperband [66] (an
improved version of successive halving) achieves state-of-the-art in HPO.

2.6.5 Hyperparameter Optimization Frameworks

There are many packages and frameworks for HPO, only ones that are
compatible with Pytorch will be listed in this part. Optuna [67] is an open-
source HPO framework that allows dynamically constructing the search space.
It implements both searching and pruning strategies efficiently and supports
parallel deployment on GPU. Tune [68] is a library of Ray from Berkeley
RISELab. It is also a scalable framework that enables the easy reproduction

Theoretical Background |19

and integration of a wide variety of aforementioned hyperparameter search
algorithms. Auto-Pytorch [69] pursues fully automated deep learning, which
includes data preparation, model selection and hyperparameter optimization.
It combines multi-fidelity optimization with portfolio construction for
warmstarting and ensembling of DNN, equipped with SMAC3 [70] optimizer.
Auto-Pytorch provides a standard pipeline, in which all of the modules are
tightly coupled, thus it doesn’t support tasks with customized datasets and
network.

20 | Theoretical Background

Methods | 21

Chapter 3
Methods

This chapter first describes the methods for the 4D-PLS task, which is to
predict for each 3D point in a given sequence of LiDAR scans (1) a semantic
label, and (2) a unique, persisted object instance ID. Then the HPO methods
used in this degree project follow up. In addition, this chapter summarizes my
efforts in building the Volvo dataset. Model evaluation and experiment setup
are at the end of this chapter. The Data is collected by the team I was in from
Volvo.

3.1 4D Panoptic LiDAR Segmentation Model

We adopt the 4D-PLS model proposed in [3]. It tackles point cloud
panoptic segmentation by jointly clustering points that belong to instances
and interpreting semantic meanings of points in the 4D continuum. Figure
3.1 gives an overview of 4D-PLS. First, several consecutive point clouds are
aligned to form a 4D volume, the input of an encoder-decoder network. The
outputs include an objectness map O that contains potential object centers, a
semantic map S that reveals point-level semantics, an embedding map ¢ that
gives the learned embeddings of points, and a variance map X that is used in
clustering.

3.1.1 Network Backbone

The encoder-decoder network comes from KPFCNN [56], a fully convo-
lutional network for segmentation. The encoder part contains 6 layers,
each of which consists of 1 strided convolutional block followed by 2
regular convolutional blocks (except for the first layer with 2 regular blocks).

22 | Methods

Point Sampling 4D Point Cloud Volume Encoder-Decoder Network

1-2

4D

Panoptic
LiDAR
Segmentation

Figure 3.1: Overall Structure of the 4D-PLS model. First merge multiple
frames to generate a 4D volume, which is then processed by an encoder-
decoder network with 4 outputs. The semantics are predicted by the semantic
head .S, object instances are identified and tracked by integrating the object
center head O, the variance head Y, and the point embeddings head .

Following the design of bottleneck ResNet blocks [9], a convolutional block is
formed by arigid KPConv, a batch normalization and a leaky ReLLU activation.
Figure 3.2 illustrates the strided and regular convolutional block structures.
The decoder part contains 5 layers, each layer is a combination of a nearest
upsampling block and a unary block (used to adjust feature dimensions).
Features in encoder blocks are concatenated to the upsampled blocks (with
shortcuts). The input of the network are /V three dimensional points (to guide
the KPConv) and two dimensional features, and the output of the decoder
includes a N x (' semantic matrix, a /N x D, point embedding matrix, a [NV x 1
object center matrix and a N x D, variance matrix. Figure 3.3 describes the
network architecture.

Methods | 23

Din Din
1% 1x1
BN BN
RelU RelU
KPConv
Maxpool Kpglz\l)nv BN
RelU RelU
11 11 Tx1 1x1
@ :
Douf l nut

RelU RelLU

- !

(b) Regular KPConv block

(a) Strided KPConv block

Figure 3.2: KPConv blocks. The Batch normalization in the shortcut is to

adjust input feature dimension, only used when D;,, # D .

Figure 3.3: Overall Structure of the KPFCNN model. Input N points (X, vy,
z) concatenated with fearures (f1, f2), the encoder part uses KPConv blocks
for feature extraction and downsampling, the feature map dimension is shown
in green near the corresponding layers. The decoder part upsamples from the
previous layer and generates 4 output matrixs with height N and width labeled
above the blocks respectively. The points are not displayed after the first layer.

w

24 | Methods

3.1.2 Instance Representation

Object instances are segmented by a bottom-up approach, which groups points
based on probability density. Points are assigned to their respective instance
by evaluating each point under the Gaussian probability density function based
on the point’s embedding vectors. The embedding vectors are concatenations
of the 4D point coordinates (z, y, z, t) and learned point features, to take both
the spatial and temporal information into account.

Specifically, given an instance center p; with its embedding vector ¢;, a query
point p; with its embedding vector e;, and a diagonal matrix >J;, the probability
of a point p; belonging to the center point p; is modeled as:

- 1 1 Ty -1
Dij = —F—=—=cap(—=(e; —¢;)" X, (e; —¢€; (3.1)
= eyl —) 5 e -)
Here the dimension of point’s embeddings and variance matrix is denoted as
D. Note that the Gaussian assumption is only valid for short-term prediction.

3.1.3 Network Training

To train the network in an end-to-end manner, the loss function is a
combination of four terms:

L = Lclass + Lobj + Lins + Lvar (32)

Semantic Loss L ;,ss: Cross-entropy loss.

Object center Loss L,,;: Objectness is introduced to predict the proximity
of the point to its instance center. For point p;, its objectness o; is Euclidean
distance between p; and its instance center normalized to [0, 1].

Instance loss L;,;: As shown in equation (3.1), p;; measures the probability
of point p; assigned to center p; based on point embeddings. Training with
L;ns promotes instance segmentation in a 4D volume by maximizing p;; when
p; belongs to p; and vice versa.

Variance smoothness loss L,,,.: To ensure the consistency of variance values
for every object instance, L., [71, 55] is applied to instance points to minimize
the variance of the variances output.

To make the network converge faster while obtaining a decent result, we first
pre-train the network with semantic loss only, then train the network with all
of the four losses.

Methods | 25

3.1.4 Inference

The inference of instances takes two steps. First, points with high objectness
scores are selected as seeds of clusters, and points with high probabilities are
assigned for each seed to form an instance prediction within a 4D volume.
Then the cross-volume instance association in a sequence is conducted based
on the overlap score.

3.2 Hyperparameter Optimization

After model establishment, tuning hyperparameters is an indispensable step
to unleash the full potential of the model. HPO is a process of finding a
hyperparameter set that yields the best model performance on a validation
dataset. In practice, to address the problem of HPO, three steps should be
taken first:

1. Define the search space, i.e. pick hyperparameters to be optimized and
give the range of values for each hyperparameter;

2. Select the evaluation metrics;

3. Find a search strategy to guide the searching process and evaluate the
candidate configurations.

Before introducing the methods in detail, a mathematical description of HPO
is given.

3.2.1 Problem Statement

Assume there are N hyperparameters to be tuned in the DNN, the domain
of the ¢-th hyperparameter is denoted as D;. A hyperparameter configuration
is a combination of all the hyperparameters, each of which a certain value is
assigned to. The whole configuration space is denoted as D = D; X Dy X
...Dy, a configuration is then represented as a /N dimentional vector x € D.
A model is first determined by a configuration, then trained on training set.
The goal is to find a hyperparameter configuration x,,¢.; that minimizes the
loss L of the corresponded trained model evaluated on validation set:

Tiarget = argmingepL(x) (3.3)

26 | Methods

Note: Loss function L is one of the most commonly used evaluation function
f. In general, f refers to any user-defined metrics applied to validating the
model.

3.2.2 Search Space

I study 5 training hyperparameters in total: batch size, learning rate,
momentum, weight decay and learning rate scheduler. Table 3.1 lists the range,
type, and baseline setting of these hyperparameters.

Hyperparameter | Baseline setting Range Type
Batch size 500 [100, 500], step = 50 Integer
Learning rate le-2 [le-4, 1e-2] Float
Momentum 0.98 [0.1, 0.99] Float
Weight decay le-3 [le-5, le-2] Float
[StepLR, ExponentialLR,
Lr scheduler ExponentialLR* | CosineAnnealingWarmRestarts, | Categorical
ReducelLROnPlateau]

Table 3.1: Hyperparameters to be tuned. * The learning rate in baseline model
decays by (0.1)20 every epoch from 0.01, namely tenfold shrinks every 200
training epochs.

3.2.3 Bayesian Hyperparameter Optimization

Since evaluating a hyperparameter configuration in the objective function f is
expensive (takes several hours), Bayesian optimization is a perfect candidate
for search strategy.

Sequential model-based optimization methods [62], a formalization of
Bayesian optimization, only evaluates the most promising hyperparameter
configuration z* that maximizes the acquisition function S that employs a
surrogate model M. M models y = f(x) with some probability distributions,
the parameters of which are easy to update and approach the true distribution
as the observations H = {(x1,v1), (z2,¥2), ..., (x;,y;)} increases, which
makes S much easier and cheaper to optimize than the objective function f.
T is the number of evaluations and subjected to resource or time constraints.

Methods | 27

The pseudo-code of the model-based optimization method is summarised in
Algorithm 1.

Unlike methods that are uninformed by past evaluations (e.g. grid search,
random search), Bayesian hyperparameter optimization makes fewer calls to
the objective function with the cost of a little more time on hyperparameters
selection (neglectable compared to the time spent on model evaluation),
overall accelerates the HPO process significantly.

Algorithm 1 Model-based hyperparameter optimization

—

: Input: objective function f, configuration domain D), acquisition
function .S, surrogate model M
Initialization: ¢t = |H|, H = (z1,v1), ..., (T4, ¥s)
repeat

Fit a new model M, to H

p(ylz, H) < M,

¥+ argmaz, pS(z,p(y|z, H))

H <« HU (z*, f(x*))

t+—t+1
untilt =T
return

R e A A

_
e

The optimization criterion adopted to propose x* (step 6), i.e. the acquisition
function is Expected Improvement. I employ Tree-structured Parzen Estimator
(TPE) algorithm to construct the surrogate model and fit a model to the
observations H (step 4) [63].

Tree-structured Parzen Estimator is a model strategy for high dimentional
HPO problems with small evaluation budgets. TPE works well with all
types of hyperparameters and outperforms the most popular Gaussian Process
Regression (GPR) according to [63]. Different from GPR that directly model
p(y|z), TPE models p(z|y) and p(y).

Strictly speaking I use Parzen-window density estimators since there is no tree
structure in the configuration space. The main idea is that each configuration
defines Gaussian distribution with a specific mean and variance, the overall
probability density function of y = f(z) is a mixture of these Guassians. The
interesting part of TPE is that p(x|y) is defined by two density functions:

l(z) ify<y*
= (3.4)
p(z|y) {g(x> ity >y

28 | Methods

where [(x) means the density of The observation set H is divided into two
groups based on y. [(x) is the density formed by good configurations which
yields evaluations smaller than y* (the smaller the better), and g(z) is the
density formed by the rest configurations. The criterion y* is decided by a
user-defined parameter v = P(y < y*). The TPE approach finds the z* by
maximizing the ratio [(x)/g(x), which means that z* is more likely from good
configurations and less likely from the bad ones.

Expected Improvement is a common choice of acquisition function. Given
x, E1(x) is the average decrease relative to the threshold y*. By maximizing
Expected Improvement (EI), a configuration that is most likely to achieve
smaller y than y* would be obtained:

+00
Ely(r) = / maz(y” —y,0)p(ylz)dy (3.5)
The deviation below proves that maximizing E/(z) is equivalent to
maximizing %. According to Bayes’ theorem:
plxjy)p
plylr) = peelynty) (3.6)
p(x)

According to the Law of total probability and substitute -y, p(x) can be written
as:

o) = [" lypv)dy

= /_ ' p(zly)p(y)dy + / joop(x\y)p(y)dy -7

=yl(z) + (1 = 7)g(z)

The E'I(x) given y* can be written as:

El(x) :/y (y" — y)wdy

o p()
_ v * l(:l:)p(y)
= (38)
Sy —w)p(y)dy 1

X
Y+(I-EE (1)

where EI,«(x) only depends on g(z), I(z). To maximize EI(x), x that

maximizes the ratio % should be chosen as the configuration to be evaluated

Methods | 29

next in f.

3.3 Dataset Preparation

3.3.1 Volvo Datasets

We mount the LiDAR on the front head of a truck, and collect 3 datasets in 3
scenarios. Two datasets are from stationary scenes, where the truck/LiDAR
stays and people walk around. One dataset comes from a dynamic scene,
where both the LiDAR and human are moving.

To carry out our work, my teammate Wangkang and I annotate 2 datasets
collected from stationary scenes, in which only people are regarded as objects
and others as background. In this project, we only use labeled Volvo datasets
for training and testing the model.

3.3.2 Point Cloud Annotation

While building a Volvo point cloud dataset for supervised learning tasks, point
cloud data annotation is the most tedious and labor-intensive job. The first and
foremost step is choosing the right annotation tool, which could shorten the
labeling process by days or weeks. There are many open source tools for point
cloud data annotation, such as LATTE [72] and LabelCloud [73]. The ideal
tool would be able to label objects and background at the same time. Here are
three tools that I tried to label data we collected.

SUSTechPOINTS [74] is a portable point cloud annotation tool with an
annotation transfer function to label the same objects in different data frames,
which allows high speed instances labeling. Unfortunately it does not provide
functions for annotating the background. Hitachi semantic segmentation
editor is a web-based labeling tool for creating Al training data sets. A
bounding box surrounds all the points by default, which requires eliminating
distant noise points of the input point clouds for visualization.

Kitti point cloud labeling tool [75] is the official annotation tool provided
by SemanticKitti. The input and output format strictly follows the official
data format of SemanticKitti datasets. It supports labeling multiple frames at
once, which could save a lot of time, particularly for annotating static scenes.
Table 3.2 summarizes the comparison between these tools. According to the
requirement of this project, which is labeling both the semantics of points and
instances IDs, we choose the Kitti labeling tool.

30 | Methods

Tools Pros Cons

SUSTechPOINTS | Batch automated editing Only for instance

Hitachi editor Well-designed Ul No batch operations

SemanticKitti tool Multiple functions Output in Kitti format

Table 3.2: Comparison between labeling tools

3.3.3 Data Preprocessing

Point cloud data obtained from LiDAR cannot be passed to the model directly,
due to hardware limitations. On the one hand, the data is affected by noise
(from sunlight, I assume). Raw point cloud data contains outlier points that
are ridiculously far away from the LiDAR sensor, the distance magnitude could
be 10 to the 30th meters. On the other hand, most of the points in the point
cloud data are useless. Points belong to the truck’s surface, the data collection
device, and points with zero values account for two-thirds of the total points.
Therefore, I first filter out the outliers (if a point has no neighbors within a
sphere with a radius of 1000 meters, it is an outlier), and remove useless points
near the LiDAR. The size of a point cloud shrinks to one-third of its original
size after the preprocessing, which significantly reduces the GPU memory
usage during training.

3.4 Evaluation

Both qualitative and quantitative evaluations of the models is given in this
section.

3.4.1 AQualitative Evalutaion

For qualitative evaluation, the quality of point cloud panoptic segmentation
will be assessed by human eye observation. Things from different classes and
instances of different objects are clearly separated in a good segmentation
result. Figure 3.4 (b) gives a perfect result of 4D-PLS; (¢) (d) show two
examples that fail to segment things and stuff respectively.

Methods | 31

(a) Ground Truth

(c) Bad semantic segmentation (d) Bad instance segmentation

Figure 3.4: Segmentation results

3.4.2 Quantitative Evaluation

To evaluate the 4D panoptic segmentation task as a whole, LiDAR
Segmentation and Tracking Quality (LSTQ) is the main evaluation metric [3],
which measures both the segmentation quality and object tracking quality.
Meanwhile, 1 keep the most intuitive metric that are commonly used in
classification/segmentation: accuracy.

LSTQ is a point-level metric that evaluates a sequence of point clouds from
two sides:

* The classification quality that denotes whether the semantic prediction
for each point is correct, measured by classification score S ;.

* The association quality that denotes whether each point from thing
classes is assigned to the correct object instance, measured by
association score Sggsoc-

Each point p corresponds to a ground-truth value p.gt (manually annotated
label) and a prediction value p.pr. Both ground-truth and predicted values

32 | Methods

contain two attributes: semantic class ¢ € [0, C] (0 for points with no labels,
C'is the number of semantic classes) and instance identification j € [0, N] (0
for background points, /N is the number of object instances), the predictions
of which are assessed by S, and S, separately.

Classification Score. Ground-truth set gt(i) and predicted set pr (i) of class
for semantic classification is defined as:

gt(i) ={p|p.gt_semantic = i}
pr(i) ={p|p.pr_semantic = i}
The true positive (1'F;), false positive (F'F;), false negative (F'IV;) sets of class
1 is:
TP; =[pr(i) N gt(1)]
FP; =[pr(i) — pr(i) N gt(i)]
FN; =|gt(i) — pr(i) N gt(i)]
The classification score S, is defined in the same way as mean Intersection
over Union (IoU) for semantic segmentation.

. Z[oU 1y 75 (39)
s = C <~ |TR| + |FF| +|FNi| '

Association Score Ground-truth and predicted sets and TP, FP, FN sets of
instance j for point-instance association is defined as:

gt(j) ={plp-gt_instance = j, p.gt_semantic € [0, C]}
pr(7) ={p|p.pr_instance = j, p.pr_semantic € [0, C|}
TPA; =[pr(j) N gt(j)]
FPA; =|pr(j) — pr(j) Ngt(j)
FNA; =|gt(j) — pr(j) N gt())]

The association score S5, is defined as a weighted sum of IoU:

TPA
assoc = N Z ‘gt (310)

LSTQ is the geometric mean of S5 and Sy ssoc:

LSTQ - Scls X Sassoc (311)

Methods | 33

Accuracy describes the proportion of correctly predicted samples in the total
sample.
|TP|+ |T'N|

A —
U = TP+ |TN| + |[FP| + |[FN|

(3.12)

3.5 Experiments Setup

To investigate the extent to which the performance of the baseline model can
be improved by HPO, I compare the searched models with the baseline model.
Considering the two-stage network training scheme, I first conduct HPO on the
pre-training stage, then try to merge the two stages based on the knowledge got
from the first set of experiments (e.g. learning curves) and perform HPO on
the whole training process.

The first set of experiments is for the pre-training stage. 1 select all the
aforementioned hyperparameters except the learning rate scheduler and set
the max number of training epochs to 50. Each searched hyperparameter
configuration is trained from scratch, then evaluated on the validation set based
on accuracy and IoU.

The second set of experiments explores the whole search space. I train 200
epochs in total on one stage: the first 40 epochs with only semantic loss to
guarantee a good initialization, and another 160 epochs with the full loss.
Experiment environment is Ubuntu 18.04, with CUDA 11.3 and Pytorch 1.12
installed on it. All the experiments are done on NVIDIA RTX A4000, 16
gigabytes of memory.

34 | Methods

Result and Analysis | 35

Chapter 4

Result and Analysis

This chapter presents the results of all the experiments I have done. Due to
the two-step training scheme taken to train the baseline model, I conducted
two sets of experiments: the first set for HPO on the pre-training stage, the
second set for the whole stage HPO which is designed based on the knowledge
obtained from the first set of experiments’ results. Experiments are introduced
in order, followed by the analyses of the results.

4.1 Experiments on the Pre-training Stage

In the first set of experiments, I study 4 hyperparameters: Batch size, learning
rate, momentum, weight decay, the types and ranges of which are listed in
chapter 3. I only use accuracy as the objective function / evaluation metric.
Considering that the number of epochs was set to 200 for the baseline pre-
training model, I first checked the learning curve of the baseline model. Figure
4.1 tells that the loss is fluctuating in the first 200 epochs, after that the
loss almost stop decreasing. I assume that the fluctuation is triggered by
the wrong hyperparameter selection. As a result, I infer that it is possible to
reach convergence with fewer training epochs if the hyperparameters are set

properly.

I first tried 50 training epochs. Figure 4.2 shows the learning curves, which
reveals that the result was unexpectedly good. The accuracy after 50 epochs’
training is 0.9126, while the accuracy of baseline (200 epochs) is 0.8945.
To further investigate if the searched configuration remains high accuracy
after 200 epochs training, I retrained the model following the same training
setting applied on baseline model, only replace these 4 hyperparameters values

36 | Result and Analysis

CE 125

loss 100

o L*"”“u4w%wJmuL¢«uu_4L_AANW.AN_M_._qqﬂ,*ww«uv~_._

o 50 100 150 200 250 300 350

Epoch

Figure 4.1: Learning curve of baseline model (L j4ss)

with the searched ones. Table 4.1 contains the evaluations of both baseline
model and searched model is based on accuracy and mean IoU, which is the
classification score S, in LSTQ.

Checkpoint (epoch) | Accuracy (%) | Ses (%)
50 73.06 52.66
Baseline model 100 80.18 59.71
200 89.29 87.61
50 91.26 90.89
Searched model 100 90.56 90.43
200 89.87 88.58

Table 4.1: Performance of baseline model and searched model (pre-training
stage)

Although the performance of searched model is better on every checkpoint,
I noticed that the searched model is degenerating as the number of training
epochs increase. The main reason of degeneration lies in the learning rate
scheduler. I used the old learning rate scheduler that shrinks the learning
rate conservatively, so that the learning rate remained relatively big when the
model was converged (after 50 epochs), which leads to a back-off of model
performance. This motivates us to study learning rate scheduler, especially
when the training epochs go up.

Result and Analysis |37

acc

—_— .};‘_.\\.

0 10 20 30
Epoch

Figure 4.2: Learning curves of trials (accuracy)

Figure 4.2 shows that the model converges after 20 epochs with proper

hyperparameter setting.

4.2 Experiment results

In the first 40 epochs, I set the model in pre-training mode where only
CrossEntropyLoss applies, after that I trained the model with full loss. The
model is trained for 200 epochs in total, and the learning curves is shown in

Figure 4.3.

0.8 .,é’rm e Y

0.6

acc

0.2 |

0 50 100 150 200
Epoch

Figure 4.3: Learning curves of trials (accuracy). The gaps in epoch 40 denote
a change of loss function during model training

38 | Result and Analysis

scheduler| 0.43

weight_decay 0.11

Hyperparameter

momentum| 011

0

0.1 02 0.3 0.4

Importance for Objective Value

Figure 4.4: Hyperparameter Importance

Figure 4.4 reveals the importance between hyperparameters, which convinces
me the learning rate is the most important hyperparameter to be tuned.

I compared the searched model with the baseline model, the results are in Table
4.2. According to the classification score S, and association score S, ssoc,
the searched model outperforms the baseline model in object association,
while slightly worse in semantic segmentation. Follow the LSTQ metric, the
searched model overall is better than the baseline model. Note: baseline model
is trained for 1000 epochs in total, yet the searched model is only trained for
200 epochs.

Accuracy (%) | Sussoc (%) | Sas (%) | LSTQ (%)
Baseline model 91.02 95.20 92.76 93.99
Searched model 91.06 97.93 91.60 94.71

Table 4.2: Comparison between the baseline model and the searched model

The visualization of the results are shown in Figure 4.5. There is no any
obvious difference bewteen two figures.

Result and Analysis | 39

..........

(b) Searched model

Figure 4.5: Visulizations of the results from baseline model and searched
model. The only difference lies on the top left of the figure, where the first
trunk on the right is predicted as grass (green) by the searched model

40 | Result and Analysis

Conclusions and Future work | 41

Chapter 5

Conclusions and Future work

In this chapter, I summarize the work I have done and draw conclusions related
to the research questions. Besides, this chapter gives limitations of the work
and what could be done in the future.

5.1 Conclusions

This work focused on the task of 4D-PLS and gave a solution that integrates
AutoML techniques to maximize the performance of the 4D-PLS model. In
fact, the model with searched hyperparameters outperformed the baseline
model and was obtained in fewer training epochs. I helped our team in Volvo
prepare the point cloud datasets, then built a 4D-PLS model and found the best
hyperparameter settings to optimize the model.

5.2 Limitations

From the perspective of 4D-PLS, the limitations of our model are threefold.
First, the model has the potential to identify instances of more objects
from different classes, if given enough labeled data; Second, the application
scenarios of our model were only stationary scenes, and can be extended
to dynamic scenes; Third, the inference speed is slow. In terms of
hyperparameter optimization, the limitations are mainly in the long runtime
of the optimization process.

42| Conclusions and Future work

5.3 Future work

For the limitations in the 4D-PLS model, there is still a long way to go before
the model is commercialized. To expand the recognition ability of the model, a
huge amount of annotated point cloud data is necessary for supervised learning
methods. One promising direction is annotating algorithms. Imagine that all
the tedious data labeling work is done by a smart annotation tool in the future.
To run the model in real-time, on the one hand, I need to synchronize with other
engineers during the model deployment to cut off unnecessary operations (e.g.
data format conversion); On the other hand, replace the encoder network or the
logic of the decoder inference, to reduce parameters and computations.

For the limitations of HPO, a future research effort is needed to address the
long runtime of searching processes. One possible solution is applying some
advanced multi-fidelity methods to save time [65]. In addition, more work
should be done to build an AutoML pipeline.

References |43

References

[1]

[7]

[8]

A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollar, ‘“Panoptic
segmentation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 9404-9413.
[Pages 1 and 9.]

A. Nguyen and B. Le, “3D point cloud segmentation: A survey,” in 2013
6th IEEE conference on robotics, automation and mechatronics (RAM).
IEEE, 2013, pp. 225-230. [Pages 1 and 8.]

M. Aygun, A. Osep, M. Weber, M. Maximov, C. Stachniss, J. Behley,
and L. Leal-Taixé, “4D panoptic lidar segmentation,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 5527-5537. [Pages 1,4, 9, 16, 21, and 31.]

M. Feurer and F. Hutter, “Hyperparameter optimization,” in Automated
machine learning. Springer, Cham, 2019, pp. 3-33. [Page 1.]

M. Frank, R. Ruvald, C. Johansson, T. Larsson, and A. Larsson,
“Towards autonomous construction equipment: supporting on-site

collaboration between automatons and humans,” International Journal
of Product Development, vol. 23, no. 4, pp. 292-308, 2019. [Page 2.]

H. Tang, Z. Liu, S. Zhao, Y. Lin, J. Lin, H. Wang, and S. Han, “Searching
efficient 3D architectures with sparse point-voxel convolution,” in

European conference on computer vision. Springer, 2020, pp. 685—
702. [Pages 2 and 15.]

D. Watzenig and M. Horn, Automated driving: safer and more efficient
future driving. Springer, 2016. [Page 4.]

M. Ryan, “The future of transportation: ethical, legal, social and
economic impacts of self-driving vehicles in the year 2025,” Science and
engineering ethics, vol. 26, no. 3, pp. 1185-1208, 2020. [Page 4.]

44 | References

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778. [Pages 4, 10, and 22.]

R. Girshick, “Fast R-CNN,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440-1448. [Pages 4 and 10.]

K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961-2969. [Pages 4 and 15.]

C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3D classification and segmentation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
652-660. [Pages 7, 10, and 14.]

S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski,
“A comparison and evaluation of multi-view stereo reconstruction
algorithms,” in 2006 IEEE computer society conference on computer
vision and pattern recognition (CVPR’06), vol. 1. IEEE, 2006, pp.
519-528. [Page 7.]

Y. Xie, J. Tian, and X. X. Zhu, “Linking points with labels in 3D:
A review of point cloud semantic segmentation,” IEEE Geoscience
and Remote Sensing Magazine, vol. 8, no. 4, pp. 38-59, 2020. doi:
10.1109/MGRS.2019.2937630 [Pages 8 and 10.]

J. Zhang, X. Lin, and X. Ning, “Svm-based classification of segmented
airborne lidar point clouds in urban areas,” Remote Sensing, vol. 5, no. 8,
pp- 3749-3775, 2013. [Page 8.]

J.-F. Lalonde, R. Unnikrishnan, N. Vandapel, and M. Hebert, “Scale
selection for classification of point-sampled 3D surfaces,” in Fifth

International Conference on 3-D Digital Imaging and Modeling
(3DIM’05). 1EEE, 2005, pp. 285-292. [Page 8.]

N. Chehata, L. Guo, and C. Mallet, “Airborne lidar feature selection
for urban classification using random forests,” in Laserscanning, 2009.
[Page 8.]

J. Niemeyer, F. Rottensteiner, and U. Soergel, “Conditional random fields
for lidar point cloud classification in complex urban areas,” ISPRS Ann.

[19]

[23]

References | 45

Photogramm. Remote Sens. Spat. Inf. Sci, vol. 1, no. 3, pp. 263-268,
2012. [Page 8.]

L.-C. Chen, A. Hermans, G. Papandreou, F. Schroff, P. Wang, and
H. Adam, “Masklab: Instance segmentation by refining object detection
with semantic and direction features,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2018, pp. 4013—
4022. [Page 9.]

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org. [Page 10.]

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015, pp. 3431-3440.
[Page 10.]

C.R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” Advances in neural
information processing systems, vol. 30, 2017. [Pages 10 and 14.]

D. Maturana and S. Scherer, “Voxnet: A 3D convolutional neural net-
work for real-time object recognition,” in 2015 IEEE/RSJ international
conference on intelligent robots and systems (IROS). 1EEE, 2015, pp.
922-928. [Pages 10 and 14.]

H. Zhou, X. Zhu, X. Song, Y. Ma, Z. Wang, H. Li, and D. Lin,
“Cylinder3d: An effective 3D framework for driving-scene lidar
semantic segmentation,” arXiv preprint arXiv:2008.01550, 2020.
[Page 10.]

A. Milioto, I. Vizzo, J. Behley, and C. Stachniss, “Rangenet++: Fast and
accurate lidar semantic segmentation,” in 2019 IEEE/RSJ international
conference on intelligent robots and systems (IROS). 1EEE, 2019, pp.
4213-4220. [Pages 11 and 15.]

L. T. Triess, D. Peter, C. B. Rist, and J. M. Zollner, “Scan-based semantic
segmentation of lidar point clouds: An experimental study,” in 2020
IEEE Intelligent Vehicles Symposium (IV). 1EEE, 2020, pp. 1116-1121.
[Pages 11 and 15.]

Y. Zhang, Z. Zhou, P. David, X. Yue, Z. Xi, B. Gong, and H. Foroosh,
“Polarnet: An improved grid representation for online lidar point clouds

http://www.deeplearningbook.org

46 | References

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

semantic segmentation,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 9601-9610.
[Pages 11 and 15.]

Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph CNN for learning on point clouds,” Acm
Transactions On Graphics (tog), vol. 38, no. 5, pp. 1-12, 2019. [Page 11.]

W. Luo, J. Xing, A. Milan, X. Zhang, W. Liu, and T.-K. Kim, “Multiple
object tracking: A literature review,” Artificial Intelligence, vol. 293, p.
103448, 2021. [Page 11.]

K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking
performance: the clear mot metrics,” EURASIP Journal on Image and
Video Processing, vol. 2008, pp. 1-10, 2008. [Page 11.]

F. Hutter, L. Kotthoff, and J. Vanschoren, Automated machine learning:
methods, systems, challenges. Springer Nature, 2019. [Page 12.]

L. Yang and A. Shami, “On hyperparameter optimization of machine
learning algorithms: Theory and practice,” Neurocomputing, vol. 415,
pp- 295-316, 2020. [Page 12.]

T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-learning
in neural networks: A survey,” IEEE transactions on pattern analysis
and machine intelligence, vol. 44, no. 9, pp. 5149-5169, 2021. [Page 13.]

T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A

survey,” The Journal of Machine Learning Research, vol. 20, no. 1, pp.
1997-2017, 2019. [Page 13.]

J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei,
“Deformable convolutional networks,” in Proceedings of the IEEE

international conference on computer vision, 2017, pp. 764-773.
[Page 14.]

Y. Xu, T. Fan, M. Xu, L. Zeng, and Y. Qiao, “SpiderCNN: Deep learning
on point sets with parameterized convolutional filters,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2018, pp. 87—
102. [Page 14.]

M. Atzmon, H. Maron, and Y. Lipman, “Point convolutional neural
networks by extension operators,” arXiv preprint arXiv:1803.10091,
2018. [Page 14.]

[38]

[40]

[43]

References |47

Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and
A. Markham, “Randla-net: Efficient semantic segmentation of large-
scale point clouds,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 11 108-11117.
[Page 14.]

Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud
based 3D object detection,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp. 4490-4499.
[Page 14.]

G. Riegler, A. Osman Ulusoy, and A. Geiger, “Octnet: Learning deep
3D representations at high resolutions,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 3577-
3586. [Page 14.]

C. Choy, J. Gwak, and S. Savarese, “4D spatio-temporal convnets:
Minkowski convolutional neural networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 3075-3084. [Pages 14 and 15.]

B. Graham, M. Engelcke, and L. Van Der Maaten, “3d semantic
segmentation with submanifold sparse convolutional networks,” in

Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 9224-9232. [Page 14.]

X. Zhu, H. Zhou, T. Wang, F. Hong, Y. Ma, W. Li, H. Li, and
D. Lin, “Cylindrical and asymmetrical 3D convolution networks for lidar
segmentation,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2021, pp. 9939-9948. [Page 14.]

B. Wu, A. Wan, X. Yue, and K. Keutzer, “Squeezeseg: Convolutional
neural nets with recurrent crf for real-time road-object segmentation
from 3D lidar point cloud,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). 1EEE, 2018, pp. 1887-1893.
[Page 15.]

E. E. Aksoy, S. Baci, and S. Cavdar, “Salsanet: Fast road and vehicle
segmentation in lidar point clouds for autonomous driving,” in 2020
IEEE intelligent vehicles symposium (IV). 1EEE, 2020, pp. 926-932.
[Page 15.]

48 | References

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

T. Cortinhal, G. Tzelepis, and E. Erdal Aksoy, “Salsanext: Fast,
uncertainty-aware semantic segmentation of lidar point clouds,” in

International Symposium on Visual Computing. Springer, 2020, pp.
207-222. [Page 15.]

Z. Liu, H. Tang, Y. Lin, and S. Han, “Point-voxel CNN for efficient
3D deep learning,” Advances in Neural Information Processing Systems,
vol. 32, 2019. [Page 15.]

F. Zhang, J. Fang, B. Wah, and P. Torr, “Deep fusionnet for point cloud
semantic segmentation,” in European Conference on Computer Vision.
Springer, 2020, pp. 644-663. [Page 15.]

J. Xu, R. Zhang, J. Dou, Y. Zhu, J. Sun, and S. Pu, “Rpvnet: A
deep and efficient range-point-voxel fusion network for lidar point

cloud segmentation,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 16 024-16 033. [Page 15.]

Z. Cai and N. Vasconcelos, “Cascade R-CNN: high quality object
detection and instance segmentation,” /EEE transactions on pattern
analysis and machine intelligence, vol. 43, no. 5, pp. 1483-1498, 2019.
[Page 15.]

K. Chen, J. Pang, J. Wang, Y. Xiong, X. Li, S. Sun, W. Feng,
Z. Liu, J. Shi, W. Ouyang et al., “Hybrid task cascade for instance
segmentation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 4974-4983.
[Page 15.]

B. De Brabandere, D. Neven, and L. Van Gool, “Semantic instance
segmentation with a discriminative loss function,” arXiv preprint
arXiv:1708.02551, 2017. [Page 15.]

A. Newell, Z. Huang, and J. Deng, “Associative embedding: End-
to-end learning for joint detection and grouping,” Advances in neural
information processing systems, vol. 30, 2017. [Page 15.]

P. Voigtlaender, M. Krause, A. Osep, J. Luiten, B. B. G. Sekar, A. Geiger,
and B. Leibe, “Mots: Multi-object tracking and segmentation,” in

Proceedings of the ieee/cvf conference on computer vision and pattern
recognition, 2019, pp. 7942-7951. [Page 16.]

[55]

[60]

[61]

[62]

References | 49

A. Athar, S. Mahadevan, A. Osep, L. Leal-Taixé, and B. Leibe, “Stem-
seg: Spatio-temporal embeddings for instance segmentation in videos,”

in European Conference on Computer Vision. Springer, 2020, pp. 158—
177. [Pages 16 and 24.]

H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and
L. J. Guibas, “Kpconv: Flexible and deformable convolution for point

clouds,” in Proceedings of the IEEE/CVF international conference on
computer vision, 2019, pp. 6411-6420. [Pages 16 and 21.]

R. Marcuzzi, L. Nunes, L. Wiesmann, I. Vizzo, J. Behley, and
C. Stachniss, “Contrastive instance association for 4D panoptic
segmentation using sequences of 3D lidar scans,” IEEE Robotics and
Automation Letters, vol. 7, no. 2, pp. 1550-1557, 2022. [Page 16.]

J. Bergstra and Y. Bengio, ‘“Random search for hyper-parameter
optimization.” Journal of machine learning research, vol. 13, no. 2,
2012. [Page 17.]

B. Bischl, M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, J. Thomas,
T. Ullmann, M. Becker, A.-L. Boulesteix et al., “Hyperparameter
optimization: ~ Foundations, algorithms, best practices and open
challenges,” arXiv preprint arXiv:2107.05847, 2021. [Page 17.]

E. Hazan, A. Klivans, and Y. Yuan, “Hyperparameter optimization: A
spectral approach,” arXiv preprint arXiv:1706.00764, 2017. [Page 17.]

M. Seeger, “Gaussian processes for machine learning,” International
Journal of neural systems, vol. 14, no. 02, pp. 69-106, 2004. [Page 18.]

F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-
based optimization for general algorithm configuration,” in International
conference on learning and intelligent optimization. Springer, 2011, pp.
507-523. [Pages 18 and 26.]

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” Advances in neural information processing
systems, vol. 24, 2011. [Pages 18 and 27.]

K. Jamieson and A. Talwalkar, ‘“Non-stochastic best arm identification
and hyperparameter optimization,” in Artificial intelligence and
statistics. PMLR, 2016, pp. 240-248. [Page 18.]

50 | References

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

S. Falkner, A. Klein, and F. Hutter, “Bohb: Robust and efficient
hyperparameter optimization at scale,” in International Conference on
Machine Learning. PMLR, 2018, pp. 1437-1446. [Pages 18 and 42.]

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter
optimization,” The Journal of Machine Learning Research, vol. 18,no. 1,
pp- 6765-6816, 2017. [Page 18.]

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in Proceedings of
the 25th ACM SIGKDD international conference on knowledge discovery
& data mining, 2019, pp. 2623-2631. [Page 18.]

R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica,
“Tune: A research platform for distributed model selection and training,”
arXiv preprint arXiv:1807.05118, 2018. [Page 18.]

L. Zimmer, M. Lindauer, and F. Hutter, “Auto-pytorch: Multi-fidelity
metalearning for efficient and robust autodl,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 43, no. 9, pp. 3079-3090,
2021. [Page 19.]

M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng,
C. Benjamins, T. Ruhkopf, R. Sass, and F. Hutter, “Smac3: A versatile
bayesian optimization package for hyperparameter optimization.” J.
Mach. Learn. Res., vol. 23, pp. 54—1, 2022. [Page 19.]

D. Neven, B. D. Brabandere, M. Proesmans, and L. V. Gool, “Instance
segmentation by jointly optimizing spatial embeddings and clustering
bandwidth,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 8837-8845. [Page 24.]

B. Wang, V. Wu, B. Wu, and K. Keutzer, “Latte: accelerating lidar point
cloud annotation via sensor fusion, one-click annotation, and tracking,”
in 2019 IEEE Intelligent Transportation Systems Conference (ITSC).
IEEE, 2019, pp. 265-272. [Page 29.]

C. Sager, P. Zschech, and N. Kiihl, “labelcloud: A lightweight domain-
independent labeling tool for 3D object detection in point clouds,” arXiv
preprint arXiv:2103.04970, 2021. [Page 29.]

References | 51

[74] E. Li, S. Wang, C. Li, D. Li, X. Wu, and Q. Hao, “Sustech points: A

portable 3D point cloud interactive annotation platform system,” in 2020
IEEE Intelligent Vehicles Symposium (IV). 1EEE, 2020, pp. 1108-1115.
[Page 29.]

J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss,
and J. Gall, “Semantickitti: A dataset for semantic scene understanding
of lidar sequences,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 9297-9307. [Page 29.]

52 | References

Appendix A: Documentation | 53

Appendix A

Documentation

A.1 Software Installation

I use docker to create a separated environment for my experiments, more
details are written in How I set the docker environment. However, conda
environment is recommended in our case. The main reason of choosing docker
is to avoid CUDA version conflict and make sure the security of the host
system.

A.2 Data Annotation

Raw point cloud data should be transformed into "bin’ format, the same format
used in Semantic-Kitti. For convenience, we use Kitti Annotation Tool. The
file that contains poses of LiDAR scans, i.e. “poses.txt’, is missing, since we
do not have any poses information. In our case, the LiDAR is mounted on a
stationary truck, so the pose of one scan is set to an identity matrix. The poses
can be obtained by IMU or poses estimation methods. Note that the poses file
is only used for the Kitti annotation tool. As for the calibration file, which
is useful only if the images from cameras are available, can be set as identity
matrix. Recording time of every scan is written in ’times.txt’, which is the
name of raw point cloud data.

A.3 Network Fine-tuning

Regarding of the backbone network training, please see How to train the
network. In this section, I will provide some ideas about how to fine-tune

https://docs.google.com/document/d/1xU4HzCnHSI7iOm3r4Sm9Ip1fTykealKlTAvlr0foTU4/edit?usp=sharing
https://github.com/jbehley/point_labeler
https://docs.google.com/document/d/1bbVDX4y1YfMdv4xsETCpRmeFpn-fdq67EDsNqFkZA00/edit?usp=sharing
https://docs.google.com/document/d/1bbVDX4y1YfMdv4xsETCpRmeFpn-fdq67EDsNqFkZA00/edit?usp=sharing

54 | Appendix A: Documentation

the network. To find the best hyperparameter configuration, one way is using
all the training datasets and performing HPO for months. I follow another
way that saves me a lot of time by using multi-fidelity tricks. Practically, I
conduct HPO on the subset of datasets and train the network within fewer
iterations. In this case, the searched hyperparameters maybe the best for the
limited iterations, but not necessarily the best for the full training process. To
improve the network performance, I run another several hundred ieration with
finetuned hyperparameters after HPO. For example, I evaluate the performance
at each check point and adjust learning rate according to the performance
metrics.

For future work, I suggest to conduct HPO on the full datasets, including the
augmented ones, then train the network up to 500 epochs given enough time.

TRITA-EECS-EX- 2022:00

www.kth.se

	Introduction
	Background
	Problem
	Purpose
	Goal
	Benefits, Ethics and Sustainability
	Methodology
	Delimitations
	Structure of the thesis

	Theoretical Background
	An Introduction to Point Cloud Data
	Point Cloud Segmentation
	Deep Learning in Point Cloud Data
	An Introduction to Deep Learning
	Point Cloud Data Representation

	Multiple Object Tracking
	Automated Machine Learning
	Hyperparameter Optimization
	Meta-learning
	Neural Architecture Search

	Related Work
	Point cloud Semantic Segmentation
	Multi-Object Tracking and Segmentation
	4D Panoptic Segmentation
	Hyperparameter Optimization Methods
	Hyperparameter Optimization Frameworks

	Methods
	4D Panoptic LiDAR Segmentation Model
	Network Backbone
	Instance Representation
	Network Training
	Inference

	Hyperparameter Optimization
	Problem Statement
	Search Space
	Bayesian Hyperparameter Optimization

	Dataset Preparation
	Volvo Datasets
	Point Cloud Annotation
	Data Preprocessing

	Evaluation
	Qualitative Evalutaion
	Quantitative Evaluation

	Experiments Setup

	Result and Analysis
	Experiments on the Pre-training Stage
	Experiment results

	Conclusions and Future work
	Conclusions
	Limitations
	Future work

	References
	Documentation
	Software Installation
	Data Annotation
	Network Fine-tuning

